2026/01/28 00:02 1/1 Quartz Scheduler Integration

Table of Contents

INErOAUCHION ..o e e e e e e e s e e e e e e e e s s r b e e e e e e e annrreeeas 1
=T o LU T =T 4 =T o 1 =PSRN 1
[111] L= OSSP PPPPPPPPUS 1
ConfIGUIAtIoN ... e 2
JOD CoNFIGUIAtioONc..ooiiiiii e e e 2
Datasource Configurationcccoccoiiiiii i 3
LOGQGING ...t e e e e et ettt rt e e e e e e e e e aa s 4
B =T o T« OSSO PP PPPPPPPTR 5

Documentation - http://doc.sibvisions.com/

2026/01/28 00:02 1/5 Quartz Scheduler Integration

Version: 1.0 / 2020-03-04

Introduction

This document describes the integration of Quartz Job Scheduler with VisionX workflow module.
Basically, it explains how a workflow can be started by Quartz Job Scheduler.

Requirements

We need following tools and libraries:

e Eclipse IDE (EE variant)

e Tomcat application server, 8 or newer

e Quartz release, 2.3.0 or newer

e Javax transaction API (javax.transaction-api-1.3.jar), 1.3 or newer
e Java Mail API (javax.mail-1.5.4.jar), 1.4 or newer

¢ |DBC drivers for datasources used in config.xml

e wfengineserver.jar

e jvx.jar

e appsclient.jar

Example

First, create a new dynamic web project in Eclipse IDE. After that, add all Quartz libraries from the
quartz_install/lib folder to your web library folder WebContent/WEB-INF/lib. You will also need to
add Javax transaction API, Java Mail API,]DBC drivers, wfengineserver.jar, jvx.jar and appsclient.jar to
your web library folder.

After your dependencies are configured, create a new Java package in the src folder of the project.
Set com.sibvisions.quartz as name. Create a new Java class in this package. The name of the class
should be Workflow)ob.

Use following source code:
WorkflowJob Job

void execute(JobExecutionContext context
JobExecutionException

JobDataMap jobDataMap = context.getJobDetail().getJobDataMap

// start workflow

Documentation - http://doc.sibvisions.com/

2026/01/28 00:02 2/5 Quartz Scheduler Integration

WorkflowEngine.getWorkflowEngine("QuartzIntegration").startWorkflow("quartz"

BigDecimal.valueOf(jobDataMap.getInt("workflowId")),
Object jobDataMap.getString("mailTo"

Exception ex

LoggerFactory.getLogger (WorkflowJob. .error(ex

The WorkflowJob is a simple Java class, that instantiates WorkflowEngine for a specific application
(Quartzintegration) and starts workflow for a specific user (quartz) with configured workflow ID and
email parameter. The configuration of parameters will be explained later.

To complete our example, we need to start the Quartz Scheduler. To do this, add following to your
Deploymentdescriptor in WebContent/WEB-INF/web.xml:

<listener>
<listener-

class>org.quartz.ee.servlet.QuartzInitializerListener</listener-class>
</listener>

Configuration

Job Configuration

Now it's time to configure the Quartz job. To do this, create the folder classes in WebContent/WEB-
INF if missing. In WebContent/WEB-INF/classes create quartz.properties file with following
content:

org.quartz.threadPool.threadCount=5

org.quartz.plugin.jobInitializer.class=org.quartz.plugins.xml.XMLSchedulingD
ataProcessorPlugin
org.quartz.plugin.jobInitializer.fileNames=quartz data.xml
org.quartz.plugin.jobInitializer.wrapInUserTransaction=false

In WebContent/WEB-INF/classes create quartz_data.xml with following content:

<?xml version="1.0" encoding="UTF-8"7>

<job-scheduling-data
xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/28 00:02 3/5 Quartz Scheduler Integration

http://www.quartz-scheduler.org/xml/job scheduling data 2 0.xsd"
version="1.8">

<schedule>
<job>
<name>WorkflowJob</name>
<job-class>com.sibvisions.quartz.Workflowlob</job-class>
<job-data-map>
<entry>
<key>mailTo</key>
<value>jozef.dorko@sibvisions.com</value>
</entry>
<entry>
<key>workflowId</key>
<value>133</value>
</entry>
</job-data-map>
</job>
<trigger>
<cron>
<name>WorkflowJob</name>
<job-name>WorkflowJob</job-name>
<cron-expression>0/10 * * * * ?</cron-expression>
</cron>
</trigger>
</schedule>

</job-scheduling-data>

As you can see, we pass two parameters (mailTo, workflowld) to the job class. Quartz will use
configured trigger and starts our job every ten seconds.

Now, the job configuration is done, and Quartz will start our job. The last step is datasource
configuration for your workflow engine.

Datasource Configuration

The datasource is needed to run a workflow. It will be configured via config.xml. To get everything in
place, create the folder structure:

WebContent
| - WEB-INF
|- rad
|- apps
| - QuartzIntegration

This is a standard JVx application structure. It is very important that the folder Quartzintegration
exists because this is the application name used in our Workflow/ob class:

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/jvx/common/setup/zones

2026/01/28 00:02 4/5 Quartz Scheduler Integration

WorkflowEngine.getWorkflowEngine("QuartzIntegration"

Put the config.xml in folder WebContent/WEB-INF/rad/apps/Quartzintegration The file contains
the application configuration, e.g:

<?xml version="1.0" encoding="UTF-8"7>

<application>
<securitymanager>
<class>com.sibvisions.rad.server.security.DBSecurityManager</class>
<accesscontroller>com.sibvisions.apps.server.object.DBWorkScreenAccess</acce
sscontroller>
<passwordalgorithm>SHA</passwordalgorithm>
<database datasource="oracle project"/>
</securitymanager>
<datasource>
<db name="oracle">
<url>jdbc:oracle:thin:@localhost:1521:xe</url>
<username>appl</username>
<password>appl</password>
</db>
<db name="oracle project">
<url>jdbc:oracle:thin:@192.168.1.35:1521:xe</url>
<username>job</username>
<password>job</password>
</db>
</datasource>
<mail>
<smtp>
<host>mail.server.com</host>
<port>587</port>
<username></username>
<password></password>
<tlsenabled>true</tlsenabled>
<defaultsender>Quartz Job <noreply@server.com></defaultsender>
</smtp>
</mail>
</application>

Logging

If you want to see some details about job execution, you should configure logging. Simply create a file
with the name log4j.xml in the src folder of your Eclipse project. Put following content into it:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

Documentation - http://doc.sibvisions.com/

2026/01/28 00:02 5/5 Quartz Scheduler Integration

<appender name="default" class="org.apache.log4j.ConsoleAppender">
<param name="target" value="System.out"/>
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="[%p] %d{dd MMM hh:mm:ss.SSS aa}
%t [%C]%n%m%n%n" />
</layout>
</appender>

<logger name="org.quartz">
<level value="info" />
</logger>

<root>
<level value="info" />
<appender-ref ref="default" />
</root>

</log4j:configuration>

Now you're ready.

Testing

You have two options to test the Quartz job. First, use Eclipse to export the project as war file. This
file can be deployed manually to any Java application server.

The second option is to run an embedded application server directly in Eclipse. To do this, configure
an application server and add your project to this server. This makes it possible to debug your code
and test if everything works as expected.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: (2]
http://doc.sibvisions.com/workflow/quartz

Last update: 2020/06/15 10:24

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/
http://doc.sibvisions.com/workflow/quartz

	Table of Contents
	Introduction
	Requirements
	Example
	Configuration
	Job Configuration
	Datasource Configuration
	Logging

	Testing

