
2025/04/02 01:40 1/1 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Table of Contents
Introduction 1 ...
Starting Point 1 ..
Create an Input Screen With Dropdown Lists 1 ..

Define Data Model 1 ..
Create Foreign-Key Relation in an Existing Data Model 2 ...
Create Dropdown Without Foreign-Key Relation 3 ..

Restrict Content of Dropdown List 4 ..
Create an Input Screen With Table and Subtable 5 ...

Create a One-to-Many Relation 5 ..
Create a Many-to-Many Relation 7 ..
Specify a Table-Subtable Relation in an Existing Data Model 8 ...

Set the Master Reference 8 ..
Views and Storages 9 ..

Manipulate the Server-Side Storage of Your Data Source 9 ...
Use a View as Data Source 11 ..

Define the Writeback Table 12 ...
Set Data as Read-Only 13 ...

Filters 13 ...
Filters Use IConditions 14 ...
Full Text Search 15 ..
Specify a BETWEEN Filter 15 ..

Download 15 ...

2025/04/02 01:40 1/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Version: 1.1 / 2024-11-18

Introduction

VisionX let's you effortlessly develop a data model by choosing a visual representation of the created
data relation. This tutorial aims to explain the coherency between the model and the visual
components. You can download the example from the VisionX Solution Store.

Starting Point

Let's assume we have already created an application with VisionX and PostgreSQL and want to
develop a specific screen. We have an idea how the screen should look like, but we have not analyzed
the required data model yet. This is the perfect starting point for our low-code platform VisionX! The
example is based on the well-known scott/tiger schema from oracle.

Create an Input Screen With Dropdown Lists

We want to create an input screen for employees and their personal data, such as name, contact
information, hire date, the current job, and the employee's department. Most input fields are text
fields. We want a date-picker for the hire date, but department and job shall be selected from a
dropdown list of possible values. How can we achieve that?

Define Data Model

Defining the data model in VisionX is straight forward: create a new table and specify the required
fields and their respective data-types. Now select the field “Department” (1) and press “Make
Combobox” (2).

To understand the implication on the created data model, press “More” (3). As simple as that, we
have just created an additional table DEPARTMENTS and defined a foreign-key constraint from
EMPLOYEES to DEPARTMENTS.

You can now drag and drop the input controls to your screen.

https://docs.oracle.com/database/121/COMSC/scripts.htm#CHDFBADB

2025/04/02 01:40 2/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Create Foreign-Key Relation in an Existing Data Model

“Nice, but not always applicable”, you may think. You do not always develop an application from
scratch but may want to reuse an existing data model. That's even more simple: if your existing data
model already uses a foreign-key relation, VisionX will automatically create a dropdown list for all
related subtables. Otherwise, you can create that relation with just a few mouse clicks.

Let's assume we have a JOBS table and we want that all jobs in that table are available as a dropdown
list in our Employees screen. Our data model currently looks like this:

To create the relation and change the text-field “job” to a dropdown list, we edit the data-object
“Employees”. In the wizard, press “More…”. Also make sure that the button “Database changes” (1)
is toggled so that VisionX can create the foreign-key relation in the database. We create a new
column “Jobs Id” and press “Make Combobox” (2).

Note: You have to add a new column and choose “Make Combobox” in one step to create a
foreign-key relation!

All we have to do is to specify the table that we want to use as lookup table; in our case, it is the JOBS
table (1).

If we want additional data from the related table to be available in our Employees screen, we can
check the corresponding columns here. Let's say we want to see the minimum salary for the
employee's job. Just select the corresponding column (1) and the field is joined to the dropdown list
(2). Press “Finish” (3) to apply your changes.

Voilá! We have just created a foreign-key relation between the tables EMPLOYEES and JOBS. Next to
that, we have a new dropdown input control “Title” that provides a lookup to the JOBS table.

This is our updated data model:

If you want, you can insert some sample data into the tables using the script hr_popul_1.sql.

Your Employees screen, created with VisionX, could look like this now (for desktop and web):

https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_popul_1.sql

2025/04/02 01:40 3/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Create Dropdown Without Foreign-Key Relation

You may still hesitate: what if you cannot, or do not want to, alter the data model? Don't worry, you
can also create a dropdown list without an underlying foreign-key relation.

Let's try based on an example: I created a new Departments screen for managing departments and
their managers using the existing database table DEPARTMENTS. Let's add a column “Manager Id” to
our DEPARTMENTS table by editing the data-object “Departments” in VisionX. Make sure that
“Database changes” (1) is toggled and press the (+) button (2) to define the column (3). Press
“Finish” (4) to finally add the column to the table.

You could also have added the column directly in the database. Let's verify our current data model.
Note that there is no relation whatsoever between DEPARTMENTS.MANAGER_ID and the table
EMPLOYEES:

What we want now is a dropdown list to select the department's manager. Use the data wizard of the
data-object “Departments” again, press “More…”, select the column “Manager Id”, and press “Define
Combobox”. In the “CombobBox Details”, select the table “Employees” (1) and check its columns
“First Name” and “Last Name” (2). Apply your changes by pressing “Finish” (3).

Note: You have to choose “Define Combobox” on an already existing column to avoid the creation
of a foreign-key relation!

That's it. We have created a dropdown list without an underlying foreign-key relation. For desktop, the
result will look like this:

Just in case you want to know how this works: JVx offers a a simple solution for linking tables called
“Automatic Link Reference”. For every database table (or view) you access from within your screen, a
so-called “Storage” is created in the screen's server-class.

With our EPlug Plugin, you can jump to the storage's source code in Eclipse by opening the Configure
Server-Side Data Storages Wizard (1) and pressing “Show Source code” (2).

The code of that storage definition is short and almost self-explaining:

 /**
 * Departments.java (Generated server-class for
DepartmentsWorkScreen.java)
 *
 * Gets the departments database storage.
 *
 * @throws Exception if the DBStorage couldn't initialized.

https://doc.sibvisions.com/jvx/client/model/databook/autolistboxes
https://doc.sibvisions.com/visionx/eplug_guide

2025/04/02 01:40 4/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

 * @return the departments DBStorage.
 */
 public DBStorage getDepartments() throws Exception
 {
 // get storage configuration from cache
 DBStorage dbsDepartments = (DBStorage)get("departments");

 if (dbsDepartments == null)
 {
 // create Database storage
 dbsDepartments = new DBStorage();

 // specify table or view to access via that storage
 dbsDepartments.setWritebackTable("departments");

 // specify the database access object to use (default)
 dbsDepartments.setDBAccess(getDBAccess());

 // link the columns "ID", "FIRST_NAME", "LAST_NAME" from the
table "employees"
 // and reference them in this storage as "MANAGER_ID",
"MANAGER_FIRST_NAME", "MANAGER_LAST_NAME".
 dbsDepartments.createAutomaticLinkReference(
 new String[] { "MANAGER_ID", "MANAGER_FIRST_NAME",
"MANAGER_LAST_NAME" },
 "employees",
 new String[] { "ID", "FIRST_NAME", "LAST_NAME" });

 // open the storage
 dbsDepartments.open();

 // cache the storage configuration internally
 put("departments", dbsDepartments);
 }
 return dbsDepartments;
 }

Restrict Content of Dropdown List

Of course, JVx offers many more features to enhance our application without manipulating the data
model. For example, we assume that the manager of each department must be assigned to the
department he or she manages. Therfore, we may want to restrict the employees in the manager
listbox to employees which are assigned to the corresponding department.

With our EPlug Plugin, you can jump to the editor's client source code in Eclipse by selecting the
editor and pressing the eclipse icon (1).

In JVx, the dropdown list is an ILinkedCellEditor. We restrict the data in the dropdown list by setting an

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://doc.sibvisions.com/visionx/eplug_guide
http://www.sibvisions.com/files/jvx/current/api/index.html?jvx/rad/ui/celleditor/ILinkedCellEditor.html

2025/04/02 01:40 5/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

additional condition to the cell editor:

 /**
 * DepartmentsWorkScreen.java (Generated client-class)
 *
 * Initializes the UI.
 *
 * @throws Throwable if the initialization throws an error
 */
 private void initializeUI() throws Throwable
 {
 // code removed

 // definition of the cell editor
 editManagerLastName.setDataRow(rdbDepartments);
 editManagerLastName.setColumnName("MANAGER_LAST_NAME");

 // set additional condition to the cell editor:
 // Only show employees whose "DEPA_ID" equals the "ID" of the
selected department.
 ((ILinkedCellEditor)editManagerLastName.getCurrentCellEditor())
 .setAdditionalCondition(new Equals(rdbDepartments, "ID",
"DEPA_ID"));

 // code removed
 }

That's it! This script updates the department's managers: hr_popul_2.sql.

Create an Input Screen With Table and
Subtable

Let's dive into another feature of VisionX: we can easily relate data entities, regardless of their
cardinality. Let me explain what I mean with the following example: each of the employees may have
fix assets assigned, such as a notebook, a mobile phone, or a coffee maker. How can we list the
employee's assets in the Employees screen?

Create a One-to-Many Relation

From a technical point of view, the relation between an employee and its assets is a one-to-many
relation. Each employee can have multiple assets assigned, but each asset is assigned to one
employee (at a time) only. In VisionX, this concept is called “Subtable”. Let's create ASSETS as a
subtable of EMPLOYEES.

Open the designer of your Employee screen and edit the data-object “Employees” (1). In the wizard,

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_popul_2.sql

2025/04/02 01:40 6/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

toggle “Database changes” (2) and add a new column by pressing the (+) button (3). Name the new
column “Assets” (4) and press “Make Subtable” (5).

Note: You have to add a new column and choose “Make Subtable” in one step to create a one-to-
many-relation!

We can now specify the details of the new table. Let's rename the column “Assets” to “Asset” (1) and
add additional columns “Issue Date” and “Type” (2). VisionX automatically creates a dropdown list for
the employee that is currently holding the asset. Press “Finish” to apply your changes.

The model pane (lower panel) of the VisionX designer now contains a new data-object “Assets”:

On data level, VisionX has created a new table ASSETS and a foreign-key relation between the tables
ASSETS and EMPLOYEES.

But a clean one-to-many relation in the data model does not fully do the trick. We want each record of
EMPLOYEES to be linked to its records in ASSETS, so that whenever we select an employee (only) the
assets assigned to that employee are shown. In JVx, this kind of link between table and subtable is
called “Master Reference”: the subtable only shows records linked to the currently selected record in
the master table. When we created the subtable via VisionX, the “Master Reference” was set
automatically. In the data-object wizard of the subtable ASSETS, the table EMPLOYEES is specified as
master table:

If you are interested in the underlying Java code, use the EPlug Plugin to jump to the client source
code in Eclipse by pressing the eclipse icon for the data-object.

 /**
 * EmployeesWorkScreen.java (Generated client-class)
 *
 * Initializes the model.
 *
 * @throws Throwable if the initialization throws an error
 */
 private void initializeModel() throws Throwable
 {
 // code removed

 // link databook to the server storage "assets"
 rdbAssets.setName("assets");
 // specify the data source to use(default)
 rdbAssets.setDataSource(getDataSource());
 // ASSETS is a subtable of EMPLOYEES: available ASSETS rows depend
on the currently selected EMPLOYEES row

https://doc.sibvisions.com/visionx/eplug_guide
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/04/02 01:40 7/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

 rdbAssets.setMasterReference(new ReferenceDefinition(new String[] {
"EMPL_ID" }, rdbEmployees, new String[] { "ID" }));
 // open databook
 rdbAssets.open();

 // code removed
 }

See: More information on the ReferenceDefinition of a Master Reference is available in the
documentation of the JVx API.

After populating the ASSETS table using the script hr_popul_4.sql, your extended web application may
now look like this now:

Create a Many-to-Many Relation

What about many-to-many relations? There are plenty of real-life scenarios for that, e.g., we may
want to select the asset's type from a predefined list of types. Assets from each type may be assigned
to multiple employees, and each employee can have assets of multiple types assigned.

As VisionX is an easy-to-use low-code-platform, it does not bother you with the cardinality nor the
required relation. Instead of analyzing the data model, you visually design what you need.

From the employee screen as starting point, we simply want a dropdown list for asset's type instead
of a textfield editor. Not a big deal with VisionX.

Let's define the table ASSET_TYPES by opening the wizard for the data-object “Assets”. In order to
create a foreign-key relation between the tables ASSETS and ASSET_TYPES, we have to recreate the
column “Type” (remember that foreign-key relations are only created for new columns, whereas
existing columns are linked via an Automatic Link Reference only, as explained in Create foreign-key
relation in an existing data model).

In the wizard, toggle “Database changes” (1), press the (+) Button to create a new column “Type”
(2), and, finally, press “Make Combobox” (3).

In the section “ComboBox Details” of the wizard, we name the table “Asset Types” (1), and the
columns ID and TYPE (2). Press “Finish” (3) to apply the changes and close the wizard.

That's it! As you can see in the screenshot of the desktop application, the asset's type is now
selectable via a dropdown list. You may use the script hr_popul_5.sql to update the test data.

The many-to-many relation between the tables EMPLOYEES and ASSET_TYPES is graphically
represented as two linked tables (EMPLOYEES and ASSETS) with a dropdown list for the ASSET_TYPES.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.sibvisions.com/files/jvx/current/api/index.html?jvx/rad/model/reference/ReferenceDefinition.html
https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_popul_4.sql
https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_popul_5.sql

2025/04/02 01:40 8/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Of course, VisionX updated the data model for us with the new table and the appropriate foreign-key
relation:

Specify a Table-Subtable Relation in an Existing Data Model

What about defining a table-subtable relation for an existing data model? Let's update our data model
with a new table LOCATIONS and link it to DEPARTMENTS with a foreign-key relation using a
PostgreSQL-Script.

The data model looks like this now:

Let's extend the departments screen by adding a data-object “Locations” for the table LOCATIONS
and dragging some of its editors. On the left, I have the list of departments. On the right, the
department's details and its location.

Looks nice, but when selecting through the departments, the location's details do not change. Why is
that? Well, as we created the data model outside VisionX, we have to specify the master table
manually with just a few mouse clicks.

Set the Master Reference

To link the DEPARTMENTS and the LOCATIONS records so that the current department's location is
automatically selected, we have to specify that DEPARTMENTS is the master table of LOCATIONS (or,
in other words, that LOCATIONS is a subtable of DEPARTMENTS).

Let's open the data-object wizard of “Locations”, press “More..” (1), select “Departments” as the
“Master Table” (2), and confirm with “Finish” (3).

We are done!

For the sake of completeness: creating a data model that gives a correct reflection of the
relationships among the entities is the preferable way to ensure consistent and coherent data.
However, under some circumstances you cannot (or may not want to) create a foreign-key relation
between table and subtable. In this case, simply create an “Automatic Link Reference” as described in
Create drop-down without foreign-key relation and VisionX will offer the referenced table as the
master table.

To give an example, I added a column LOCA_ID to the assets table (you may use my script) and
created an automatic link reference between ASSETS and LOCATIONS in the assets screen - check it
out!

https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_locations.sql
https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/hr_popul_6.sql

2025/04/02 01:40 9/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Views and Storages

Until now, to keep it simple, we have been working with database tables. Of course, we are in no way
limited to tables as data sources! We can use database views and queries of any complexity. We will
investigate some of that more advanced features with the help of a concrete example:

Let's create a screen “Assets” that shows all available assets by their locations. In my mental
concept, the location information of my assets is redundant: the asset is assigned to a location (after
acquisition) and optionally to an employee (when it becomes issued). But what if the employee
changes their department or the employee's department changes its location? Let's assume that the
employee (and the department) take their stuff along. That means the employee's location overrides
the asset's location. I need a data source that provides me the current location of all assets according
to that rule.

Manipulate the Server-Side Storage of Your Data Source

Adapting the data provided by a table is straightforward with VisionX. Remember that for every data
object, a server-side storage is created. We can manipulate that storage to contain the required
information.

Open the editor for the server-side storage that VisionX created for the data object by pressing the
“Edit storages” icon on the right side of the lower pane:

On the left, we have a list of available storages for the screen. We select the storage “assets” (1) and
specify the query that shall be used for the storage:

The <query columns> (2) are:

asse.id,
asse.asset,
asse.empl_id,
asse.issue_date,
asse.asty_id,
asty.type asty_type,
empl.last_name empl_last_name,
COALESCE(emlo.id, aslo.id) empl_loca_id,
COALESCE(emlo.name, aslo.name) empl_loca_name

The <from clause> (3) is:

assets asse
INNER JOIN asset_types asty ON asse.asty_id = asty.id
LEFT JOIN employees empl ON asse.empl_id = empl.id
LEFT JOIN departments depa ON empl.depa_id = depa.id
LEFT JOIN locations emlo ON depa.loca_id = emlo.id
LEFT JOIN locations aslo ON asse.loca_id = aslo.id

2025/04/02 01:40 10/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

We can verify the generated SQL query by pressing the “Show SQL Query” button (4).

As a foreign-key-relation exists between the table ASSETS and EMPLOYEES, the automatic link
reference between the corresponding data objects is created automatically. In the case of ASSETS
and LOCATIONS, we have to create the automatic link reference manually (as described in Create
Dropdown Without Foreign-Key Relation). The generated code for this server-side looks like this:

 /**
 * Gets the assets database storage.
 *
 * @throws Exception if the DBStorage couldn't initialized.
 * @return the assets DBStorage.
 */
 public DBStorage getAssets() throws Exception
 {
 DBStorage dbsAssets = (DBStorage)get("assets");
 if (dbsAssets == null)
 {
 dbsAssets = new DBStorage();
 dbsAssets.setWritebackTable("assets");
 dbsAssets.setDBAccess(getDBAccess());
 dbsAssets.setQueryColumns(new String[] { "asse.id",
 "asse.asset",
 "asse.empl_id",
 "asse.issue_date",
 "asse.asty_id",
 "asty.type asty_type",
 "empl.last_name empl_last_name",
 "COALESCE(emlo.id, aslo.id) empl_loca_id",
 "COALESCE(emlo.name, aslo.name) empl_loca_name" });
 dbsAssets.setFromClause(
 "assets asse "
 + "INNER JOIN asset_types asty ON asse.asty_id = asty.id
"
 + "LEFT JOIN employees empl ON asse.empl_id = empl.id "
 + "LEFT JOIN departments depa ON empl.depa_id = depa.id
"
 + "LEFT JOIN locations emlo ON depa.loca_id = emlo.id "
 + "LEFT JOIN locations aslo ON asse.loca_id = aslo.id");
 dbsAssets.createAutomaticLinkReference(new String[] { "EMPL_ID",
"EMPL_LAST_NAME" }, "employees", new String[] { "ID", "LAST_NAME" });
 dbsAssets.createAutomaticLinkReference(new String[] {
"EMPL_LOCA_ID", "EMPL_LOCA_NAME" }, "locations", new String[] { "ID", "NAME"
});
 dbsAssets.open();

 put("assets", dbsAssets);
 }
 return dbsAssets;

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/04/02 01:40 11/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

 }

That's it. The data object “assets” will now reference the department's location instead of the asset's
location.

Use a View as Data Source

If necessary, we could have alternatively created a database view like this:

CREATE OR REPLACE VIEW V_ASSETS_LOCALIZED AS
SELECT asse.id,
 asse.asset,
 asse.empl_id,
 asse.issue_date,
 asse.asty_id,
 asty.type asty_type,
 empl.last_name empl_last_name,
 COALESCE(emlo.id, aslo.id) empl_loca_id,
 COALESCE(emlo.name, aslo.name) empl_loca_name
 FROM assets asse
 INNER JOIN asset_types asty
 ON asse.asty_id = asty.id
 LEFT JOIN employees empl
 ON asse.empl_id = empl.id
 LEFT JOIN departments depa
 ON empl.depa_id = depa.id
 LEFT JOIN locations emlo
 ON depa.loca_id = emlo.id
 LEFT JOIN locations aslo
 ON asse.loca_id = aslo.id
;

We can use a view in the VisionX data-object wizard just like any table.

In the VisionX lower pane, select the “NEW table” tab and press the (+) button to open the wizard. In
the wizard, select “Use existing data from database tables” and confirm with “Next >”, keep the
selection “Use Application Database User” and, again, confirm with “Next >”. You can now select the
view as data source. Note that views have a different icon:

Let's verify the server-side storage that VisionX created for the data object by pressing the “Edit
storages” icon on the right side of the lower pane:

On the left, we have the list of available storages for the screen. Remember that for every data
object, a server-side storage is created. We select the storage “vAssetsLocalized”, which is the
storage of our currently created view, to review its settings.

2025/04/02 01:40 12/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Per default, the view is set as “Writeback Table”. This means, that the application will try to save
changes on the data object's data in the view itself (which works fine for updateable views or views
using INSTEAD OF triggers).

Define the Writeback Table

Of course, we can name another table or view as the target relation for an INSERT, UPDATE, or
DELETE. Let's choose the table “assets”. Change the “Writeback Table” to “assets” (1), the “from”
clause to “v_assets_localized” (2), and confirm your changes with “Finish”.

Whenever we execute an insert or delete on the data object now, the row will actually be inserted into
or deleted from the table ASSETS. Given that the columns of the view and the writeback table are
named equally, any UPDATES on that columns will also target the ASSETS table.

This is the generated code for the views server-side storage (after creating an additional Automatic
Link Reference between V_ASSETS_LOCALIZED and LOCATIONS):

 /**
 * Gets the v_assets_localized database storage.
 *
 * @throws Exception if the DBStorage can't be initialized.
 * @return the vAssetsLocalized DBStorage.
 */
 public DBStorage getVAssetsLocalized() throws Exception
 {
 DBStorage dbsVAssetsLocalized = (DBStorage)get("vAssetsLocalized");
 if (dbsVAssetsLocalized == null)
 {
 dbsVAssetsLocalized = new DBStorage();
 dbsVAssetsLocalized.setWritebackTable("assets");
 dbsVAssetsLocalized.setDBAccess(getDBAccess());
 dbsVAssetsLocalized.setFromClause("v_assets_localized");
 dbsVAssetsLocalized.createAutomaticLinkReference(new String[] {
"EMPL_ID", "EMPL_LAST_NAME" }, "employees", new String[] { "ID", "LAST_NAME"
});
 dbsVAssetsLocalized.createAutomaticLinkReference(new String[] {
"EMPL_LOCA_ID", "EMPL_LOCA_NAME" }, "locations", new String[] { "ID", "NAME"
});
 dbsVAssetsLocalized.open();

 put("vAssetsLocalized", dbsVAssetsLocalized);
 }
 return dbsVAssetsLocalized;
 }

We can use any of the upper data storages (“Assets” or “VAssetsLocalized”) for our data object
“Assets”. I designed this screen to contain all relevant information about the asset, the employee
currently holding the asset, and that employee's department. Therefore, I created data objects for the

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/04/02 01:40 13/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

tables LOCATIONS and EMPLOYEES and linked them to the “Assets” data object by setting Master
References. Moreover, I created a data object for the table DEPARTMENTS and made “EMPLOYEES”
the master table for it. The resulting assets screen looks like this:

However, I do not want all that information to be editable in this screen. Let's set some of the data as
read-only.

Set Data as Read-Only

Select the assets screen in designer mode and press the “Customize” button (1) at the top left corner.
In the lower part of the popup, VisionX will suggest some of the events provided by the currently
selected control. We want that the data is set to read-only in this screen immediately after the screen
is created. let's. therefore. click on “Create On Load” (2).

The “Edit Action” window opens. The text in the tab page “Description” will be copied to the
documentation of the source code. Let's select the tab page “Action” (1) to specify what shall be done
whenever the screen is loaded. Press the dropdown list button (2) to see all predefined commands. To
avoid scrolling through the list, I filter the list by entering “disable” in the editor (3) and press the
drop down list button again. Select “Disable Edit in table” (3).

See: For detailed information on all available VisionX Actions and how to use them, check out the
documentation.

Next, we have to specify the data object that shall not be editable; we choose “[Table:
Departments]”. To add another action for the same event, drag and drop a command from the right
pane to the action table. Let's select “Disable Edit in table” again, this time for “[Table: Employees]”.

I still want to be able to change the employee that is the current holder of the asset. Therefore, I bind
the editor “Last Name” to the column “Last Name” of the “Localized Assets” storage (which is
editable). In designer mode, select the editor and press the “Customize” icon (1). Open the Binding
dropdown list (2) and choose “[Localized Assets.Last Name]” (3) as binding for that editor.

Done! My asset screen is ready to use without writing even one line of Java code:

Filters

To be honest, showing the location table in the departments screen is dispensable. As my use-case is
to show all available assets by their locations, I could have done so more easily by creating a filter

https://doc.sibvisions.com/visionx/actions

2025/04/02 01:40 14/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

editor for the asset's location. Let's give that a try:

Open the “Assets with Filter” screen in designer view and drag and drop the “Search” editor (1) to the
screen (2).

Select the editor, press the “Customize” icon (1), and specify the search mode in the lower part of the
popup. Let's select “Like” as search mode (2) and “[Localized Assets.Location]” as column (3) to
search in.

VisionX automatically creates a dropdown list for the location filter editor due to the automatic link
reference between the storage [Localized Assets.Location] and the table LOCATIONS. But the “Like”
filter does more than simple text matching. You can use the wildcard character ? as placeholder for
any single character and * or % as placeholders for any number of characters.

For example, you may want to filter for assets at locations starting with “South” (such as Southlake,
South San Francisco or South Brunswick) by entering “South*” (or “South%”) into the location filter
editor. Or you enter “*en*” (or “%en%”) to get all assets at locations containing “en” (such as “UK
Central” or “Venice”).

I added another “Like” filter editor for the employee, and this is the result:

Filters Use IConditions

How does this work? Each filter editor creates an ICondition and is connected to other conditions by
the logical operator AND. In other words, if multiple filters are set, the result contains only those rows
that match all of the filters.

Of course, VisionX supports more than one search mode to use in filters and conditions. These are:

Search mode Description

Like Compares literals ignoring the character casing.
Supports ?, * and % as wildcards.

Equals Compares literals case sensitively.
No wildcards allowed.

Less Matches all values that are less the entered value.
The comparison algorithm depends on the column's data type.

Less equals Matches all values that are less or equal the entered value.
The comparison algorithm depends on the column's data type.

Greater Matches all values that are greater the entered value.
The comparison algorithm depends on the column's data type.

Greater equals Matches all values that are greater or equal the entered value.
The comparison algorithm depends on the column's data type.

Contains Matches all literals that contain the entered value ignoring the character casing.
Supports ?, * and % as wildcards.

http://www.sibvisions.com/files/jvx/current/api/index.html?jvx/rad/model/condition/ICondition.html

2025/04/02 01:40 15/15 Data Modeling and Representation

Documentation - https://doc.sibvisions.com/

Search mode Description

Starts with Matches all literals that start with the entered value ignoring the character casing.
Supports ?, * and % as wildcards.

All of the above filters operate on a specific column.

Full Text Search

What about the default search editor we've used in all of our screens so far? If you just drag and drop
the “Search” editor to a screen, a filter with the following specification is created:

Search mode Description

Full text search Matches all literals that contain the entered value in any column.
Supports ?, * and % as wildcards.

The “Full text search filter” operates on all columns of the data object.

Specify a BETWEEN Filter

Let's implement the possibility to filter for assets issued in a specific time span, in other words,
between two dates. Simply drag and drop two search editors and bind them to “[Localized
Assets.Issue Date]” (1). Use “Greater equals” (2) for the first filter and “Less equals” for the second
filter.

That's it. The web application looks nice too:

Download

You can download the entire example application from the VisionX Solution Store. The data model we
created during this tutorial is available as data-model.sql.

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/visionx/data_modeling_and_representation

Last update: 2024/11/18 10:40

https://doc.sibvisions.com/_media/visionx/data_modeling_and_representation/data-model.sql
https://doc.sibvisions.com/
https://doc.sibvisions.com/visionx/data_modeling_and_representation

	Table of Contents
	Introduction
	Starting Point
	Create an Input Screen With Dropdown Lists
	Define Data Model
	Create Foreign-Key Relation in an Existing Data Model
	Create Dropdown Without Foreign-Key Relation
	Restrict Content of Dropdown List

	Create an Input Screen With Table and Subtable
	Create a One-to-Many Relation
	Create a Many-to-Many Relation
	Specify a Table-Subtable Relation in an Existing Data Model
	Set the Master Reference

	Views and Storages
	Manipulate the Server-Side Storage of Your Data Source
	Use a View as Data Source
	Define the Writeback Table

	Set Data as Read-Only

	Filters
	Filters Use IConditions
	Full Text Search
	Specify a BETWEEN Filter

	Download

