
2026/01/29 17:22 1/1 Multi-factor authentication

Documentation - http://doc.sibvisions.com/

Table of Contents

2026/01/29 17:22 1/4 Multi-factor authentication

Documentation - http://doc.sibvisions.com/

A modern authentication system offers more than one check for user verification. A simple
mechanism is username/password check. But the problem is often that it's not secure enough
because if someone knows your username/password combination, doors are open. So an additional
check is necessary to get better security. There are different techniques like:

enter a verification code, sent to a custom email address
use an app to confirm (often used for online banking)
use another authentication provider like Auth0, Okta, Google, …

Sure, the list is not complete but it covers common solutions.

The authentication mechanism of JVx is flexible. The default security managers are ready to use and
offer base checks. The framework supports different databases and also xml files for user
management. It's easy to create your own security manager if you need specific checks. If you require
multi-factor authentication for your application. it's also possible with JVx because it's already built-in.
JVx contains a standard implementation for common multi-factor authentication mechanism'. As
usual, it's supported to implement your own multi-factor authentication.

The configuration is simple. Just wrap your existing security manager:

before:

<securitymanager>
 <class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
 <userfile>users.xml</userfile>
</securitymanager>

after:

<securitymanager>
 <class>com.sibvisions.rad.server.security.mfa.MFASecurityManager</class>
 <mfa enabled="true">
 <class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
 <authenticator>
<class>com.sibvisions.rad.server.security.mfa.auth.TextInputMFAuthenticator<
/class>
 <!--
 use an implementation of:
com.sibvisions.rad.server.security.mfa.auth.IPayloadNotificationHandler
 <notificationhandler></notificationhandler>
 -->
 </authenticator>
 </mfa>
 <userfile>users.xml</userfile>
</securitymanager>

The important thing is the authenticator. The TextInputMFAuthenticator creates a
password/code for confirmation. It sends the code via notificationhandler. The default
implementation sends an email. It's possible to create your own notification handler to send the code
as SMS or use a different communication channel.

The default implementation is

2026/01/29 17:22 2/4 Multi-factor authentication

Documentation - http://doc.sibvisions.com/

com.sibvisions.rad.server.security.mfa.auth.DefaultTextInputNotificationHandl
er. It reads the mail server configuration from config.xml:

<mail>
 <smtp>
 <host>mail.server.com</host>
 <port>587</port>
 <username>user</username>
 <password>pwd</password>
 <tlsenabled>true</tlsenabled>
 <defaultsender>Noreply <noreply@server.com></defaultsender>
 </smtp>
</mail>

The email is configured as template. The standard templates are located in package
/com/sibvisions/rad/server/security/mfa/auth/. If you create custom templates, define
your own package via searchpath:

<authenticator>
 <searchpath>com/myapp/mfa/auth</searchpath>
</authenticator>

The template mechanism loads different files. The first one is the translation file and the second one
is the template html:

package/translation_mfa_<language_code>.xml
package/translation_mfa.xml (fallback: if no language specific xml file was found)
package/confirmationcode_<language_code>.html
package/confirmationcode.html (fallback: if no language specific html file was found)

The template should contain placeholders: [CONFIRMATION_CODE], [TIMEOUT].
This placehoders will be replaced with generated values.

If no template was found, a standard email with following text will be sent:

Confirmation code: [CONFIRMATION_CODE] is valid for [TIMEOUT] seconds

The UI will look like this screenshot:

The TextInputMFAuthenticator is one of three default authenticators. The other two are

com.sibvisions.rad.server.security.mfa.auth.WaitMFAuthenticator
com.sibvisions.rad.server.security.mfa.auth.AbstractURLMFAuthenticator

If you configure the WaitMFAuthenticator, the UI will look like this screenshot:

The wait authenticator can be use to wait for verification. The verification process is not included in
JVx. You have to implement your own

2026/01/29 17:22 3/4 Multi-factor authentication

Documentation - http://doc.sibvisions.com/

com.sibvisions.rad.server.security.mfa.auth.IWaitNotificationHandler and add it
to the configuration, e.g.:

<authenticator>
 ...
<notificationhandler>com.myapp.mfa.auth.MyWaitNotificationHandler</notificat
ionhandler>
</authenticator>

The timeout for verification can be configured in config.xml as well, e.g.

<securitymanager>
 <mfa>
 <!-- milliseconds, 10 seconds -->
 <timeout>10000</timeout>
 </mfa>
</securitymanager>

If you configure a timeout which is lower 1, the default timeout of 5 minutes (300000) will be used.

The last built-in MF authenticator is the AbstractURLMFAuthenticator. This authentication
method is not fully implemented because it requires an external service for user authentication. The
URL authentication mechanism requires your own extension of
com.sibvisions.rad.server.security.mfa.auth.AbstractURLMFAuthenticator. The
class requires two methods:

/**
 * Creates a new {@link Link}.
 *
 * @param pToken the access token
 * @param pSession the session
 * @param pUser the user information
 * @return the URL
 */
protected abstract Link createLink(AccessToken pToken, ISession pSession,
UserInfo pUser);

/**
 * Gets whether the confirmation is finished.
 *
 * @param pToken the access token
 * @param pSession the session
 * @return <code>true</code> if confirmation is successful,
<code>false</code> otherwise
 */
protected abstract boolean isConfirmed(AccessToken pToken, ISession
pSession);

The implementation shouldn't be a problem. Simply send the link to the external authentication
system and check if user is verified/authenticated. That's all.

2026/01/29 17:22 4/4 Multi-factor authentication

Documentation - http://doc.sibvisions.com/

The UI will show the URL as link or embedded in an iframe:

If default MFA implementations of JVx do not fit your needs, it's no problem to implement your own MF
authentication. The MFA support is available in the MFAHandler class and this class can be used in
your own security managers or MF authenticators.

<securitymanager>
 <class>com.sibvisions.rad.server.security.mfa.MFASecurityManager</class>
 <mfa enabled="true">
 <class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
 <authenticator>
<class>ccom.sibvisions.rad.server.security.mfa.auth.MultiWaitMFAuthenticator
</class>
 </authenticator>
 </mfa>
 <userfile>users.xml</userfile>
</securitymanager>

The full source code of the authenticator is available here.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/server/security/mfa

Last update: 2022/11/22 09:59

https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/library/src/com/sibvisions/rad/server/security/mfa/MFAHandler.java
https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/library/test/com/sibvisions/rad/server/security/mfa/auth/MultiWaitMFAuthenticator.java
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/server/security/mfa

	Table of Contents

