2026/01/17 08:44 1/1 Creating Life Cycle Objects

Table of Contents

Documentation - http://doc.sibvisions.com/

2026/01/17 08:44 1/6 Creating Life Cycle Objects

JVx's Life Cycle Objects are not only containers for objects and methods, they also allow the reuse of
functionality through inheritance. Any POJO can potentially be used as a lifecycle object, although this
would mean that we forego the advantage of reuse.

We recommend a special use and a predefined class hierarchy to exploit all the advantages without
restrictions!

Configuration

Ideally, life cycle objects are defined for the application and for the MasterSession.

The objects are defined in the application configuration:

<application>

<!-- predefined life-cycle object names -->
<lifecycle>

<application>com.sibvisions.apps.showcase.Application</application>

<mastersession>com.sibvisions.apps.showcase.Session</mastersession>
</lifecycle>
</application>

The class name for the MasterSession can also be defined during the creation of MasterConnection
using setLifeCycleName.

Each MasterConnection (Client) requires a MasterSession (Server) to access the server.

The life cycle object for the application is optional and is only required for tasks spanning multiple
applications.

Class Hierarchy

We will explain the class hierarchy based on a showcase application.

The applications life cycle object:

Application.java

com.sibvisions.apps.showcase

/**
* Application object for Showcase application.
*/

Application GenericBean

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/jvx/server/lco/lifecycle
http://doc.sibvisions.com/_export/code/jvx/server/lco/objects?codeblock=1

2026/01/17 08:44 2/6 Creating Life Cycle Objects

// Application

The class GenericBean handles the object administration, which is why we derive from it.

The MasterSession life cycle object:

Session.java
com.sibvisions.apps.showcase
/**
* Session object for Showcase application.
*/
Session Application

e eSS e e e S e e e e e s e
// User-defined methods
A S
/X%

* Returns access to the database.
*k
* @return the access to the database
* @throws Exception if the datasource can not be opened
*/
DBAccess getDBAccess Exception

DBAccess dba DBAccess)get ("dBAccess"
dba null

IConfiguration cfgSession
SessionContext.getCurrentSessionConfig

dba HSQLDBAccess

//read the configuration from the config file
dba.setConnection(cfgSession.getProperty
"/application/securitymanager/database/url"
dba.setUser(cfgSession.getProperty
"/application/securitymanager/database/username"
dba.setPassword(cfgSession.getProperty
"/application/securitymanager/database/password"
dba.open

put ("dBAccess", dba

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/jvx/server/lco/objects?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/17 08:44 3/6 Creating Life Cycle Objects

dba

/**

* Gets the source code access object.
>k

* @return the source access object
*
g SourceCode getSourceCode
SourceCode sc SourceCode)get("sourceCode"
sc null

sc SourceCode

put("sourceCode", sc

SC

// Session

We derive from Application to receive full access to the methods and objects of the super class. The
derivation of GenericBean ensures the availability of objects.

Each SubConnection (Client), and, therefore, each workscreen, receives its own life cycle object:

Educations.java

com.sibvisions.apps.showcase. frames

/**

* The <code>Educations</code> class is the life cycle object for
<code>EducationsFrame</code>.

i/
Educations Session
[[e e e e e e e e e e e e e e e e e e e
// User-defined methods
e o e e e e e e e e e e e i e e
/**

* Returns the educations storage.

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/jvx/server/lco/objects?codeblock=3

2026/01/17 08:44 4/6 Creating Life Cycle Objects

* ¥

@return the Educations storage
@throws Exception if the initialization throws an error

*

*/
DBStorage getEducations Exception

DBStorage dbsEducations DBStorage)get("educations"
dbsEducations null

dbsEducations DBStorage
dbsEducations.setDBAccess (getDBAccess
dbsEducations.setFromClause("V EDUCATIONS"
dbsEducations.setWritebackTable("EDUCATIONS"
dbsEducations.open

put("educations", dbsEducations

dbsEducations

// Educations

The life cycle object is derived from session to also receive full access to all methods and objects of
the super class.

By calling getDBAccess we can see the advantage of this technique. We open the database
connection at a central location and all derivations have access to the connection.

By using this procedure we perform changes at a central location; we can save time and solve

dependencies.

GenericBean

The previous example shows that, due to the derivations, all methods are inherited but each instance
would usually manage its own objects. We would, therefore, expect that each instance of Educations
creates a new database connection through the call of getDBAccess!

This is the difference between POJO and GenericBean.

Because of the derivation of GenericBean, the server makes sure that all instances are reused. In our
example, the session Instance is set as the parent at the instantiation of Educations and the
Application instance is set as parent of the Session instance. Because of this definition, the method
getDBAccess always returns the same database connection.

Another feature of GenericBean is the access to managed objects by their names:

DBStorage dbsEducations DBStorage)get("educations"

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/17 08:44

5/6 Creating Life Cycle Objects

We can, therefore, call either getEducations() or get(“educations”) and, in both cases, the same
instance is delivered. For this process to work, the desired object has to be instantiated and put to the

cache:

dbsEducations

dbsEducations.
dbsEducations.
dbsEducations.
dbsEducations.

DBStorage
setDBAccess (getDBAccess
setFromClause("V EDUCATIONS"
setWritebackTable("EDUCATIONS"
open

put("educations", dbsEducations

A rather unusual, but economical, approach of the GenericBean is the initialization of objects without
get methods. In this case objects are accessed via name only.

Our Educations life cycle object would be implemented as follows:

Educations.java

/**

Educations Session

* Initializes the educations storage.

*

* @return the educations storage
* @throws Exception if the initialization throws an error

*/
@SuppressWarnings("unused"
DBStorage initEducations Throwable
dbsEducations DBStorage

dbsEducations.setDBAccess(getDBAccess
dbsEducations.setFromClause("V EDUCATIONS"
dbsEducations.setWritebackTable ("EDUCATIONS"
dbsEducations.open

dbsEducations

// Educations

Initialization occurs automatically at first access using get(“educations”). The name of the method has
to be considered: “init” + “Educations” (depends on the object name).

A disadvantage of this method is that derived classes have no overview of the managed objects!

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/jvx/server/lco/objects?codeblock=6
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/17 08:44 6/6 Creating Life Cycle Objects

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: (2]
http://doc.sibvisions.com/jvx/server/lco/objects

Last update: 2020/06/26 12:16

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/server/lco/objects

	Table of Contents
	[Configuration]
	[Configuration]
	[Configuration]
	Configuration
	Class Hierarchy
	GenericBean

