2026/01/16 07:17 1/1 Server-Side Call Events

Table of Contents

Documentation - http://doc.sibvisions.com/



2026/01/16 07:17 1/3 Server-Side Call Events

If you call a server-side function or an action, usually you don't need more than the result on the
client (Ul). If you have complex business logic on server side, or if you call multiple server-side
functions or actions in one single call, it would be useful to have server-side events with call
information. Sometimes it's really helpful to do something after a single or all calls, e.g., cleanup of
states, commit, or rollback connection(s) (if you don't use autocommit).

Our JVx server implementation has some events which could be useful for your application. We've
defined the interface jvx.rad.server.ICallHandler with the following methods:

CallEventHandler<IBeforeFirstCallListener> eventBeforeFirstCall
CallEventHandler<IAfterLastCallListener> eventAfterLastCall

CalleEventHandler<IBeforeCallListener> eventBeforeCall
CallEventHandler<IAfterCallListener> eventAfterCall

void invokeAfterCall(Runnable pRunnable
void invokeAfterLastCall(Runnable pRunnable
void invokeFinally(Runnable pRunnable

The ICallHandler is accessible via
ServerContext.getCurrentInstance().getCallHandler
or
SessionContext.getCurrentInstance().getCallHandler

The difference is that ServerContext always returns the call handler for the master session and
SessionContext returns the call handler for the current session.

If you register listeners for the ICallHandler of MasterSession, they will be notified about all calls in
your application. All other sessions will be notified about own calls.

The events are one feature of ICallHandler. The other feature are one-time method calls via invoke...
methods. The concept is similar to invokeLater of GUI toolkits like swing or JavaFX: Execute
“something” after all other methods were called. On server-side it's not good to name a method
invokelLater because there are different options, e.qg., invoke after current call (invokeAfterCall) or
invoke after all calls (invokeAfterLastCall).

We have an additional method that invokes “something” after all other operations. It's invokeFinally.

The call stack could look like the following, for a single action call:
connection.callAction("doServerAction"

BEFORE FIRST call
BEFORE call
doServerAction
AFTER Call
invokeAfterCall
AFTER LAST call

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runnable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runnable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runnable

2026/01/16 07:17 2/3 Server-Side Call Events

invokeAfterLastCall
invokeFinally

multiple action calls:
connection.callAction String "doServerAction", "doMailAction"

BEFORE FIRST call
BEFORE call
doServerAction
AFTER Call
invokeAfterCall
BEFORE call
doMailAction
AFTER Call
invokeAfterCall
AFTER LAST call
invokeAfterLastCall
invokeFinally

Listener Registration

You should register your listeners in a method annotated with @PostConstruct:

@PostConstruct
void createSession

ICallHandler handler
SessionContext.getCurrentInstance().getCallHandler

handler.eventBeforeFirstCall().addListener , "doBeforeFirstCall"
handler.eventBeforeCall().addListener , "doBeforeCall"
handler.eventAfterCall().addListener , "doAfterCall"
handler.eventAfterLastCall().addListener , "doAfterLastCall"

Sure, it would be possible to register listeners in constructor of your life cycle object, but you should
know that the constructor could be called unexpectedly, e.qg., if you inherit one LCO from another one:

Application
| -Session
| - Screen
| - LockedScreen

If you're using LockedScreen, the constructors of Screen, Session, and Application will be called. You
could check the class:

getClass LockedScreen.

//register listeners

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/16 07:17 3/3 Server-Side Call Events

but it's better to use @PostConstruct.

Unregister Listeners

Usually, it's not necessary to unregister listeners because the ICallHandler will be available as long as
the session is alive. But if you're working with ServerContext, it's a good idea to remove your listeners
because JVx doesn't do this automatically.

Simply use a method, annotated with @PreDestroy:

@PreDestroy
void destroySession

ICallHandler handler
ServerContext.getCurrentInstance().getCallHandler

handler.eventAfterLastCall().removelListener

Invoke Methods or Listener Registration

It's not always possible to register a listener, or you won't do this because you don't need it for all
your server calls. If you want to call a one-time function, please use invokeAfterCall or
invokeAfterLastCall. Be careful with invokeFinally because this method was “reserved” for JVx objects.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: [x]
http://doc.sibvisions.com/jvx/server/lco/call_events

Last update: 2024/11/18 10:33

Documentation - http://doc.sibvisions.com/


http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/server/lco/call_events

	Table of Contents
	[Listener Registration]
	[Listener Registration]
	[Listener Registration]
	Listener Registration
	Unregister Listeners
	Invoke Methods or Listener Registration





