2025/10/27 09:36 1/1 First JVx Application (Step by Step)

Table of Contents

Documentation - https://doc.sibvisions.com/

2025/10/27 09:36

1/16

The aim of

this tutorial is to create an application with the Enterprise Application Framework.

Moreover, a quick overview of the framework's possibilities will be given.

The application's task is to display the data from a database table and make them editable. The
application requests authentication with username and password.

The following skills and tools are needed:

e JVx Binary package

Eclipse IDE (>= 3.4) with DT (recommended: Eclipse IDE for Java EE developers)
JDK 8.0 (1.8) or higher

HSQLDB library (http://www.hsqldb.org)

Database and SQL skills

This documentation covers the following areas:

e JVx Folder Structure
e Eclipse Project Configuration
¢ Application Development
o Client
o Server
e Creation of a Workscreen
e Use of a HyperSQL Database

Folder Structure

To develop an application with JVx, a special folder structure is recommended. This simplifies the
build process and separates any dependencies between client and server. This structure is to be
created as follows:

=]

A conventional structure:

(]

can also be used on request. However, the documentation refers to the recommended structure.

Folder |Description

rad Contains application- and server-specific files.

aDDS Contains all available applications. Only one application is contained in this concrete
PP example.

firstapp |Contains the application with project configuration, sources, libraries.

help Contains the client for the online help and help pages.

libs Contains all libraries that are necessary both on the client and the server.

libs/client |Contains all libraries that are only necessary for the client.

libs/server|Contains all libraries that are only necessary for the server.

src.client |Contains all the sources that are only necessary for the client.

src.server |Contains all the sources that are only necessary for the server.

test Contains unit tests for the client and server or the libraries.

Documentation - https://doc.sibvisions.com/

First JVx Application (Step by Step)

http://sourceforge.net/projects/jvx/files/latest/download
http://www.hsqldb.org

2025/10/27 09:36 2/16 First JVx Application (Step by Step)

Once the folder structure has been created, copy the library jvxclient. jar to the folder
libs/client and the library jvx. jar to the folder Libs/server. Both libraries are contained in
the JVx binary package.

Project Configuration

Once the configuration steps have been performed, a new project can be created with Eclipse:

* File / New / Java Project
» Note that the project has to be set up in the application folder firstapp

* Remove the src folder from the Source Folders
Set the folders src.client, src.server and test as Source Folder

x]

e Add the jvx.jar library, from the project directory JVxFirstApp/libs/server
e The project can now be created

The project is shown in Eclipse as follows:

=]

The src folder can be deleted for consistency as it is not needed in our application.

Application Development

On the server side, the application needs a configuration file for the settings that only concern the
application. For the configuration of the server, an extra configuration file is needed. First, we create
the file for the application:

e File / New / File - config.xml
(created directly in the application folder JVxFirstApp)

(x]

The file is filled as follows:

config.xml

<?xml version="1.0" encoding="UTF-8"7>

<application>
<securitymanager>
<class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
<userfile>users.xml</userfile>
</securitymanager>

<!-- predefined life-cycle object names -->

<lifecycle>
<mastersession>apps.firstapp.Session</mastersession>
<application>apps.firstapp.Application</application>

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=0

2025/10/27 09:36 3/16 First JVx Application (Step by Step)

</lifecycle>
</application>

Parameter Description

The security manager for verification of the usernames/password when
logging into the application.

securitymanager/usersfile The file with the username/password combinations allowed.

The class name of the server object that is instantiated when the client
performs a login or starts a new MasterSession.

The class name of the server object that is instantiated when the
lifecycle/application application is first accessed. This object is reused every time the
application is accessed.

securitymanager/class

lifecycle/mastersession

The server configuration file must be stored in the folder . ./JVxFirstApp/rad/server.

However, the folder does not appear in our Eclipse project because it is at a higher folder level. The
configuration file could be created directly in the file system, or we can create a folder link in our
project:

* File/ New / Folder

]

The configuration file can then be created:

 File / New / File - config.xml

(]

The file is filled as follows:

config.xml
<?xml version="1.0" encoding="UTF-8"?7>

<server>
</server>

The server does not need any special parameters for our application.

For the client, we now need a class of type jvx.rad.application.IApplication. A standard
implementation of JVx is implemented via com.sibvisions.rad.application.Application.
We then derive our client from it and thereby create a class in the directory src.client with the
following source code:

FirstApplication.java
apps.firstapp

jvx.rad.application.genui.UILauncher
jvx.rad.remote.IConnection

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=1
https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=2

2025/10/27 09:36 4/16 First JVx Application (Step by Step)

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.server.DirectServerConnection;

/x*

* First application with JVx, Enterprise Application Framework.
>k

* @author René Jahn
*/
public class FirstApplication extends Application

{

[/~ e e

// Initialization

[/~ s e

/X%

* Creates a new instance of <code>FirstApplication</code> with a
technology

* dependent launcher.

*

* @param pLauncher the technology dependent launcher

* @throws Exception if initialization fails

*/

public FirstApplication(UILauncher pLauncher) throws Exception

{

super(pLauncher) ;

}

[/~ e e

// Overwritten Methods

[/~ e e

/X%
* {@inheritDoc}
*/
@Override
protected IConnection createConnection() throws Exception

{

return new DirectServerConnection();

}

/**
* {@inheritDoc}
*/
@Override
protected String getApplicationName()

{

return "firstapp";

}

} // FirstApplication

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/10/27 09:36 5/16 First JVx Application (Step by Step)

Method Description
The standard constructor cannot be used, as each application is started with a
Constructor technology-dependent launcher. This launcher is already passed to the

application in the constructor.

The communication protocol is initialized. ADirectServerConnectionis
sufficient for our application because both the client and the server are started
in the same VM. However, if an application server is in use, a HttpConnection
could also be used.

Sets the application name. This name is needed for the communication with the
server, as the latter uses the appropriate application configuration depending on
the application name.

In our case, the application name must be firstapp, because the work
directory is also called . ./JVxFirstApp/rad/firstapp/. The application
name MUST always match the directory name!

createConnection

getApplicationName

It is now time for the first start of the application. To do so, we set up a Runtime configuration:

¢ Run / Run Configurations... / Application - New launch configuration - with the settings:

o

Parameter Description
The technology-dependent launcher is defined here. We use the Swing

Main class technology for our application and start a Swing application.

The launcher must be told which application to start. For our Swing application,
Program .
arguments we can use the mechanism of program arguments and pass the class name of

our application.

The application can now be started and looks as follows:

(x]

The first login attempt fails with the following message:
Userfile 'users.xml' does not exist!

This file was defined in the config.xml file of the application; however, it has not yet been created.
We do so now here:

¢ File / New / File - users.xml

=]
We fill the file with the following:

users.xml
<?xml version="1.0" encoding="UTF-8"7?>

<users>
<user name="admin" password="admin"/>
</users>

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=4

2025/10/27 09:36 6/16 First JVx Application (Step by Step)

Any number of user lines can be entered!

Now the login to the application works perfectly. However, to fulfill our task, we still need the
possibility to display or edit a database table. We will now turn to this part of the task.

Create a Workscreen

Before we create a workscreen, we prepare the application to display the workscreen. To do so, we
extend our FirstApplication class as follows:

FirstApplication.java

package apps.firstapp

import jvx.rad.application.genui.UILauncher
import jvx.rad.genui.UIImage

import jvx.rad.genui.component.UIButton
import jvx.rad.genui.container.UIToolBar
import jvx.rad.genui.menu.UIMenu

import jvx.rad.genui.menu.UIMenuItem

import jvx.rad.remote.IConnection

import com.sibvisions.rad.application.Application
import com.sibvisions.rad.server.DirectServerConnection

/x*
* First application with JVx, Enterprise Application Framework.
>k
* @author René Jahn
*/
public class FirstApplication extends Application
e e e e e e
// Initialization
/[~ S e
/X%
* Creates a new instance of <code>FirstApplication</code> with a
technology

* dependent launcher.
*

* @param pLauncher the technology dependent launcher
*/
public FirstApplication(UILauncher pLauncher

super(pLauncher

[[~ s e

// Overwritten Methods

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=5

2025/10/27 09:36 7/16 First JVx Application (Step by Step)

JX*
* {@inheritDoc}
*/
@Override
IConnection createConnection Exception

DirectServerConnection
/**
* {@inheritDoc}
*/
@Override
String getApplicationName
“firstapp"”
/**
* {@inheritDoc}
*/
@Override
void afterLogin
.afterLogin

//configure MenuBar

UIMenu menuMasterData UIMenu
menuMasterData.setText("Master data"

UIMenuItem miDBEdit createMenulItem
"doOpenDBEdit", null, "DB Edit",
UIImage.getImage (UIImage.SEARCH LARGE
menuMasterData.add (miDBEdit

//insert before Help
getMenuBar() .add (menuMasterData,

//configure ToolBar

UIToolBar tbMasterData UIToolBar

UIButton butDBEdit createToolBarButton
"doOpenDBEdit", null, "DB Edit",
UIImage.getImage(UIImage.SEARCH LARGE

tbMasterData.add (butDBEdit

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/10/27 09:36

8/16 First JVx Application (Step by Step)

getLauncher().addToolBar(tbMasterData

J**

* Opens the edit screen.

*/

void doOpenDBEdit

//TODO open the workscreen

// FirstApplication

Method Description
This method is invoked form the super class after a successful login. We use this
method to extend our menu and our toolbar.

afterLogin
It is not necessary to undo our changes after logout as this is done by the super
class.

doOpenDBEdit This method is called when the menu or the toolbar button is selected.

createMenultem

Provided by the super class to create menu entries. The first parameter
contains the name of the method that is to be called when the menu entry is
selected. The second parameter contains the command (ActionCommand)
which does not play any role in our case. The text of the menu entry is to be
defined in the third parameter, and, lastly, the image for the entry is passed.

createToolBarButton

Similar to createMenuItem, except here a button is created which adjusts
itself to the layout of the toolbar.

Ullmage.getimage

Provides a predefined image from the image library of JVx.
We use a predefined image for convenience.

We now create the client class for our workscreen:

* File / New / Class
src.client, apps.firstapp.frames.DBEditFrame

(]

and use the following source code:

DBEditFrame.java

apps.firstapp.frames

jVX.
JVX.
jVX.
jVX.

rad.genui.container.UIGroupPanel
rad.genui.container.UIInternalFrame
rad.genui.control.UITable

rad.genui. layout.UIBorderLayout

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=6

2025/10/27 09:36

9/16 First JVx Application (Step by Step)

import
import

import
import

import

/**

jvx.
jvx.

com.
com.
com.

rad.remote.
rad.remote.

sibvisions.
sibvisions.
sibvisions.

AbstractConnection;
MasterConnection;

rad.application.Application;
rad.model. remote.RemoteDataBook;
rad.model.remote.RemoteDataSource;

* A simple database table editor.

*

* @author René Jahn

*/

public class DBEditFrame extends UIInternalFrame

{
//~~

// Class Members

//~~

/** the application. */
private Application application;

/** the communication connection to the server. */
private AbstractConnection connection;

/** the DataSource for fetching table data. */
private RemoteDataSource dataSource = new RemoteDataSource!() ;

/** the contacts tabl. */
private RemoteDataBook rdbContacts = new RemoteDataBook!() ;

//~~

// Initialization

//~~

/**

* Creates a new instance of DBEditFrame for a specific application.

*

* @param pApp the application
* @throws Throwable if the remote access fails

*/

public DBEditFrame(Application pApp) throws Throwable

{

super (pApp.getDesktopPane());

application = pApp;

initializeModel() ;
initializeUI();

}

/**

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/27 09:36 10/16 First JVx Application (Step by Step)

* Initializes the model.
>k
* @throws Throwable if the initialization throws an error
*/
void initializeModel Throwable

//we use a new "session" for the screen

connection MasterConnection)application.getConnection
createSubConnection("apps.firstapp.frames.DBEdit"
connection.open

//data connection
dataSource.setConnection(connection
dataSource.open

//table
rdbContacts.setDataSource(dataSource
rdbContacts.setName("contacts"
rdbContacts.open

/**
* Initializes the UI.
b3

* @throws Exception if the initialization throws an error
*/
void initializeUI Exception

UIGroupPanel group UIGroupPanel
group.setText("Available Contacts"

UITable table UITable
table.setDataBook(rdbContacts

group.setlLayout UIBorderLayout
group.add(table

//same behaviour as centered component in BorderLayout
setlLayout UIBorderLayout
add (group

setTitle("Contacts"
setSize UIDimension (400, 500

// Overwritten Methods
[/~~~ S R R R R R R S R e e e e o o S e

/**

* Closes the communication connection and disposes the frame.

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/27 09:36

11/16 First JVx Application (Step by Step)

*/

@Override

void dispose

connection.close
Throwable th

//nothing to be done

.dispose
// DBEditFrame
Method Description
initializeModel Instantiates the objects for access to the server or data.
InitializeUl Layout of the workscreen.

dispose

Ends the connection to the server for the workscreen and closes the frame. The
connection must not be explicitly closed, as this takes place fully automatically
by the GarbageCollector. This is, however, not a drawback in our first
application.

createSubConnection

We create our own connection to the server. This has the advantage that a
separate lifecycle object is used on the server. This object contains all objects
which are needed by the workscreen. Once the workscreen is closed, the used
memory is released. Moreover, each connection can have special parameters
and timeouts. The requested lifecycle object is defined with the class name:
apps.firstapp.frames.DBEdit.

The class we will create later.

Member |Description
The connection to the server, especially for the workscreen. A special communication
connection |protocol is used in the background. In our case, it is represented by the class
DirectServerConnection.
The data source is independent of the communication protocol and takes care of the
dataSource |data transfer between client and server. The connection defines under which name the
server-side object is to be found in the lifecycle object.
The model and the controller for data display.
rdbContacts|The name contacts defines under which name the server-side business object can be
found.
table The view for data display.

The workscreen is now ready and can be integrated in the application. We now implement the missing

call:

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/27 09:36 12/16 First JVx Application (Step by Step)

FirstApplication.java

FirstApplication Application

/¥

* Opens the edit screen.
*

* @throws Throwable if the edit frame can not be opened
*/

void doOpenDBEdit Throwable
DBEditFrame frame DBEditFrame

configureFrame(frame

frame.setVisible(true

// FirstApplication

Method Description

The method can easily throw a Throwable. All application errors are caught by the
application and shown in an information dialogue.

This method is provided by the super class and ensures that all frames have a
similar look. This also includes the menu icon.

doOpenDBEdit

configureFrame

The client implementation is now finished. Before we can use the application, we must create the
missing server classes. We create the following classes:

* File / New / Class
src.server, apps.firstapp.Application

=]
Application.java
apps.firstapp

com.sibvisions.rad.server.GenericBean

/%
* The LCO for the application.
*

* @author René Jahn
*/

Application GenericBean

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=7
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=8

2025/10/27 09:36

13/16 First JVx Application (Step by Step)

// Appl

ication

Description

The class represents the lifecycle object for an application. There is exactly one instance of this class
for each application, thereby enabling the use of session-wide objects.

¢ File / New / Class

src.server,

=]

apps.firstapp.Session

ps.firstapp
sibvisions.rad.persist.jdbc.DBAccess
sibvisions.rad.persist.jdbc.IDBAccess
for the session.

René Jahn

Session Application

// User-Defined Methods

ns access to the database.

rn the database access

* @throws Exception if a connection error occurs

Session.java
ap
com.
com.
/%%
* The LCO
*
* @author
%/
/[~~~~
/X%
* Retur
>
* @retu
w5/
I
DBAcce
db
dba
dba.
dba.
dba.
dba.
put

DBAccess getDBAccess Exception
ss dba DBAccess)get ("dBAccess"
a null

HSQLDBAccess

setUrl("jdbc:hsgldb:hsql://localhost/firstappdb"
setUsername("sa"

setPassword(""

open

"dBAccess", dba

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=9
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/27 09:36 14/16 First JVx Application (Step by Step)

dba

// Session

Description

The class represents a lifecycle object for a session. In our case, a session begins with the login to
the application and ends with the logout. There is exactly one instance of this object for each session.
This allows objects to be used for the full duration of the login.

Thanks to the inheritance of apps.firstapp.Application, it is very easy to use even application
objects.

Method Description
Opens a new connection to a HyperSQL database if this has not already happened.

getDBAccess

The exception handling is taken over by the server.

* File / New / Class
src.server, apps.firstapp.frames.DBEdit

(]
DBEdit.java
apps.firstapp.frames
jvx.rad.persist.IStorage
com.sibvisions.rad.persist.jdbc.DBStorage
apps.firstapp.Session
/**

* The LCO for the DBEdit WorkScreen.
b3

* @author René Jahn

o/

DBEdit Session
/] e
// User-Defined Methods
[/[~~~~ S R R R R R R R S e R S P S S e
/**

* Returns the contacts storage.
*

* @return the contacts storage
* @throws Exception if the initialization throws an error
*/

IStorage getContacts Exception

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp_step-by-step?codeblock=10
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/27 09:36 15/16 First JVx Application (Step by Step)

DBStorage dbsContacts DBStorage)get("contacts"
dbsContacts null
dbsContacts DBStorage
dbsContacts.setDBAccess (getDBAccess
dbsContacts.setFromClause("CONTACTS"
dbsContacts.setWritebackTable("CONTACTS"
dbsContacts.open

put("contacts", dbsContacts

dbsContacts

// DBEdit

Description
The class represents the lifecycle object for the DBEditFrame workscreen. The objects can only be
accessed via the SubConnection of the workscreen.

Thanks to the inheritance of apps.firstapp.Session, itis very easy to access all Session and
Application objects.
Method Description

Enables the access to the database table CONTACTS. The method name must match the
object name of the RemoteDataBook: contacts = getContacts.

getContacts

The Exception Handling is taken over by the Server.

The application is now fully implemented and ready to run. So as to be able to work with the
application, we need a database with the CONTACTS table that we want to access. The configuration
of HyperSQL DB is not described in detail in this document, as the examples on the project page are
detailed and sufficient. In the next chapter, you will find a short summary of the necessary steps.

Create Database

The following steps should take place to create and start a HyperSQL DB.

e Copy the HyperSQL JDBC-Driver (hsqldb. jar) to the directory
../JVxFirstApp/libs/server/

e Add the JDBC-Driver to the CLASSPATH of the JVxFirstApp Project

e Create a database with the alias firstappdb and the following table:

CONTACTS

ID
FIRSTNAME

Documentation - https://doc.sibvisions.com/

2025/10/27 09:36 16/16 First JVx Application (Step by Step)

LASTNAME
BIRTHDAY
STREET
NR

ZIP

TOWN

e Start the database, e.q.:

java -cp ../libs/server/hsqldb.jar org.hsqldb.Server -database.0
file:firstappdb -dbname.0® firstappdb

The First Application

Once the database has been started, the application can also be started. The final application should
look as follows:

(=]

The source code and the Eclipse project can be found in the Download section.

From:
https://doc.sibvisions.com/ - Documentation

Permanent link: (%]
https://doc.sibvisions.com/jvx/firstapp_step-by-step

Last update: 2024/11/18 10:15

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/jvx/example_applications
https://doc.sibvisions.com/
https://doc.sibvisions.com/jvx/firstapp_step-by-step

	Table of Contents
	[Folder Structure]
	[Folder Structure]
	[Folder Structure]
	Folder Structure
	Project Configuration
	Application Development
	Create a Workscreen
	Create Database
	The First Application

