2025/10/22 23:02 1/1 First JVx Application

Table of Contents

Documentation - https://doc.sibvisions.com/

2025/10/22 23:02 1/9 First JVx Application

In the following paragraphs, we will show you how to create your first JVx application with minimal
effort and code.

The application's task is to display data from a database table and make the data editable.
Before you start, you will need the following libraries and tools:

¢ JVx Binary Package

e Eclipse IDE (>= 3.4) with DT (recommended: Eclipse IDE for Java EE Developers)
e JDK 8.0 (1.8) or higher

e HSQLDB library (http://www.hsqldb.org)

¢ JVx Sample Eclipse Project

For our JVx sample application, we need the following parts:

 Application

e Workscreen

¢ Business Object

¢ Database Connection

Create an Application

We need an application as a frame for the client. Each application must implement the interface
jvx.rad.application.IApplication. In our example, we derive from the standard
implementation com.sibvisions.rad.application.Application, whereby we use the
following code:

FirstApplication.java

apps.firstapp

jvx.rad.application.genui.UILauncher
jvx.rad.genui.UIImage
jvx.rad.genui.component.UIButton
jvx.rad.genui.container.UIToolBar
jvx.rad.genui.menu.UIMenu
jvx.rad.genui.menu.UIMenultem
jvx.rad.remote.IConnection

com.sibvisions.rad.application.Application
com.sibvisions.rad.server.DirectServerConnection

/**

* First application with JVx, Enterprise Application Framework.
*

* @author René Jahn
*/
FirstApplication Application

Documentation - https://doc.sibvisions.com/

http://sourceforge.net/projects/jvx/files/latest/download
http://www.hsqldb.org
http://sourceforge.net/projects/jvxfirstapp/files/latest/download
https://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=0

2025/10/22 23:02 2/9 First JVx Application

// Initialization
[/~~~~ == e 2 S e 2 s

/X%

* Creates a new instance of <code>FirstApplication</code> with a
technology-

* dependent launcher.

*

* @param pLauncher the technology dependent launcher

* @throws Exception if initialization fails

*/

FirstApplication(UILauncher pLauncher Exception

pLauncher

// Overwritten Methods

[]~ e

/**
* {@inheritDoc}
*/
@Override
IConnection createConnection Exception

DirectServerConnection

/X%
* {@inheritDoc}
*/
@Override
String getApplicationName

"firstapp"
/**
* {@inheritDoc}
*/
@Override
void afterLogin
.afterLogin

//configure MenuBar

UIMenu menuMasterData UIMenu
menuMasterData.setText("Master data"

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/10/22 23:02 3/9 First JVx Application

UIMenuItem miDBEdit createMenultem
"doOpenDBEdit", null, "DB Edit",
UIImage.getImage (UIImage.SEARCH LARGE
menuMasterData.add (miDBEdit

//insert before Help
getMenuBar().add (menuMasterData, 1

//configure ToolBar

UIToolBar tbMasterData UIToolBar

UIButton butDBEdit createToolBarButton
"doOpenFrame", null, "DB Edit",
UIImage.getImage (UIImage.SEARCH LARGE

tbMasterData.add (butDBEdit

getLauncher().addToolBar(tbMasterData

/**
* Opens the edit screen.
*

* @throws Throwable if the edit frame can not be opened
*/

void doOpenDBEdit Throwable
DBEditFrame frame DBEditFrame

configureFrame(frame

frame.setVisible(true

// FirstApplication

Method Description
A specific constructor is needed, as each application is started with a launcher
Constructor that depends on the technology used. This launcher is passed over to the

application in the constructor.

The communication protocol is initialized. ADirectServerConnectionis
sufficient for our application, as both the client and the server are started in the
same VM. However, if an application server is integrated, a HttpConnection
could also be used.

createConnection

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/22 23:02

4/9 First JVx Application

Method

Description

getApplicationName

Sets the application name. This name is needed for the communication with the
server, as the latter uses the appropriate application configuration depending
on the application name. In our case, the application name must be “firstapp”,
as the working directory is also called . . /JVxFirstApp/rad/firstapp/.

afterLogin

This method is called by the super class after a successful login. We use this
method to extend our menu and our toolbar.

It is not necessary to reset the changes after logout, as this is done
automatically by the super class.

createMenultem

Provided by the super class to create menu entries. The first parameter
contains the name of the method which is to be called when the menu entry is
selected. The second parameter contains the command (ActionCommand),
which plays no role in our case. The text of the menu entry is to be defined in
the third parameter, and, lastly, the image for the entry is passed over.

createToolBarButton

Similar to createMenuItem, except that this method creates a button which
adapts to the layout of the toolbar.

Ullmage.getimage

Provides a predefined image from the JVx image library.
For ease of use, we use a predefined image.

doOpenDBEdit

This method is called when the menu or the toolbar button is pressed and calls
the corresponding workscreen.

configureFrame

This method is provided by the super class and ensures that all frames look the
same. This includes the menu icon.

Create a Workscreen

Once we have created the application framework, we create our first workscreen with the following

code:

DBEditFrame.java

apps.firstapp.frames

jVX.
jVX.
jVX.
jVX.
jVX.
JVX.

com.
com.
com.

/**

rad.genui.container.UIGroupPanel
rad.genui.container.UIInternalFrame
rad.genui.control.UITable
rad.genui. layout.UIBorderLayout
rad.remote.AbstractConnection
rad.remote.MasterConnection

sibvisions.rad.application.Application
sibvisions.rad.model. remote.RemoteDataBook
sibvisions.rad.model.remote.RemoteDataSource

* A simple database table editor.

*

* @author
*/

René Jahn

DBEditFrame UIInternalFrame

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=1

2025/10/22 23:02 5/9 First JVx Application

// Class members

[/~ e

/** the application. */
Application application

/** the communication connection to the server. */
AbstractConnection connection

/** the DataSource for fetching table data. */
RemoteDataSource dataSource RemoteDataSource

/** the contacts tabl. */

RemoteDataBook rdbContacts RemoteDataBook
[[~~ e e e e e e e e e e e e e e e e
// Initialization
[/[~~~~ ~~ e ~~ e e e e e e~
/**

* Creates a new instance of DBEditFrame for a specific application.
%

* @param pApp the application
* @throws Throwable if the remote access fails
*/
DBEditFrame (Application pApp Throwable

pApp.getDesktopPane
application = pApp

initializeModel
initializeUI

Vit
* Initializes the model.
b3
* @throws Throwable if the initialization throws an error
*/
void initializeModel Throwable

//we use a new "session" for the screen

connection MasterConnection)application.getConnection
createSubConnection("apps.firstapp.frames.DBEdit"
connection.open

//data connection
dataSource.setConnection(connection
dataSource.open

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/22 23:02

6/9 First JVx Application

//table

rdbContacts.setDataSource(dataSource
rdbContacts.setName("contacts"
rdbContacts.open

Veks

* Tnitializes the UI.

*

* @throws Exception if the initialization throws an error

*/

void initializeUI Exception

UIGroupPanel group UIGroupPanel
group.setText("Available Contacts"

UITable

table UITable

table.setDataBook(rdbContacts

group.setlLayout UIBorderLayout
group.add(table

//same behaviour as centered component in BorderLayout
setlLayout UIBorderLayout
add (group

setTitle("Contacts"

setSize

UIDimension (400, 500

// DBEditFrame

Method Description
initializeModel Initialises the client objects for the access to the server or the data.
InitializeUl Laying out of the workscreen.

createSubConnection

We create a separate connection to the server. This has the advantage that a
separate business object is used on the server. This object contains all objects
needed by the workscreen. Once the work screen is closed, the used memory
is released. Moreover, each connection can have special parameters and
timeouts.

The requested business object is defined with the following class:
apps.firstapp.frames.DBEdit.

The class will be created later on.

Member |Description

The connection to the server specially for the workscreen. A special communication

connection |protocol is used in the background. In our case, it mirrors the

DirectServerConnection class.

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/22 23:02 7/9 First JVx Application

Member |Description
This is the data source and looks after the transfer of data between the client and the
server. The connection is used for the transfer.

The model and the controller for data display.
rdbContacts|The name contacts defines under which name the server-side business object can be
found.

dataSource

Create a Business Object

Once we have created the client, we need the corresponding business object on the server so as to
define the source of the data more precisely. To do so, we use the following code:

DBEdit.java
apps.firstapp.frames
jvx.rad.persist.IStorage
com.sibvisions.rad.persist.jdbc.DBStorage
apps.firstapp.Session
/**

* The LCO for the DBEdit WorkScreen.
3

* @author René Jahn

s

DBEdit Session
/] e
// User-defined methods
[~~~
/**

* Returns the contacts storage.
*

* @return the contacts storage
* @throws Exception if the initialization throws an error
*/

IStorage getContacts Exception

DBStorage dbsContacts DBStorage)get("contacts"
dbsContacts null

dbsContacts DBStorage
dbsContacts.setDBAccess (getDBAccess
dbsContacts.setFromClause("CONTACTS"
dbsContacts.setWritebackTable("CONTACTS"
dbsContacts.open

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/22 23:02 8/9 First JVx Application

put("contacts", dbsContacts

dbsContacts

// DBEdit

Description

The class mirrors the business object for the DBEditFrame workscreen. The objects can only be
accessed via the SubConnection of the workscreen.

Through the class derivation of apps.firstapp.Session, it is very easy to access all objects of
the session and the Application.

Method Description

Enables the access to the database table CONTACTS. The method name must match the
object name of the RemoteDataBook: contacts = getContacts.

getContacts

Exception handling is taken over by the server.

Create a Database Connection

In the business object, we referred to the data source with the method getDBAccess (). In our case,
we use a HyperSQL database. We define the database connection in the following class:

Session.java
apps.firstapp
com.sibvisions.rad.persist.jdbc.DBAccess
com.sibvisions.rad.persist.jdbc.IDBAccess
/**

* The LCO for the session.
3

* @author René Jahn

*/
Session Application
/[e e
// User-defined methods
/[e
/**

* Returns access to the database.

*

* @return the database access

* @throws Exception if a connection error occurs

*/

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=3

2025/10/22 23:02 9/9 First JVx Application

IDBAccess getDBAccess Exception
DBAccess dba DBAccess)get("dBAccess"
dba null
dba HSQLDBAccess
dba.setUrl("jdbc:hsqldb:hsql://localhost/firstappdb"
dba.setUsername("sa"
dba.setPassword(""

dba.open

put("dBAccess", dba

dba

// Session

Method Description
Opens a new connection to a HSQL database if this has not yet occurred.

getDBAccess

Exception handling is taken on by the server.

The application is now fully implemented and ready to run. To be able to work with the application, we
need the database including the CONTACTS table, which we want to access. It has already been
created in the Eclipse project and can be started with . ./JVxFirstApp/db/startHSqlDB.bat.

The First JVx Application

Once the database has been started, the application can be started via the run menu in Eclipse. The
finished application should now look as follows:

(]

You can find more details about the components of a JVx application as well as step-by-step
instructions for Eclipse under Step by step introductions to the JVx application.

From:
https://doc.sibvisions.com/ - Documentation

Permanent link: (]
https://doc.sibvisions.com/jvx/firstapp

Last update: 2024/11/18 10:27

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
https://doc.sibvisions.com/jvx/firstapp_step-by-step
https://doc.sibvisions.com/
https://doc.sibvisions.com/jvx/firstapp

	Table of Contents
	[Create an Application]
	[Create an Application]
	[Create an Application]
	Create an Application
	Create a Workscreen
	Create a Business Object
	Create a Database Connection
	The First JVx Application

