
2025/12/31 13:24 1/1 First JVx Application

Documentation - http://doc.sibvisions.com/

Table of Contents

2025/12/31 13:24 1/9 First JVx Application

Documentation - http://doc.sibvisions.com/

In the following paragraphs, we will show you how to create your first JVx application with minimal
effort and code.

The application's task is to display data from a database table and make the data editable.

Before you start, you will need the following libraries and tools:

JVx Binary Package
Eclipse IDE (>= 3.4) with JDT (recommended: Eclipse IDE for Java EE Developers)
JDK 8.0 (1.8) or higher
HSQLDB library (http://www.hsqldb.org)
JVx Sample Eclipse Project

For our JVx sample application, we need the following parts:

Application
Workscreen
Business Object
Database Connection

Create an Application

We need an application as a frame for the client. Each application must implement the interface
jvx.rad.application.IApplication. In our example, we derive from the standard
implementation com.sibvisions.rad.application.Application, whereby we use the
following code:

FirstApplication.java

package apps.firstapp;

import jvx.rad.application.genui.UILauncher;
import jvx.rad.genui.UIImage;
import jvx.rad.genui.component.UIButton;
import jvx.rad.genui.container.UIToolBar;
import jvx.rad.genui.menu.UIMenu;
import jvx.rad.genui.menu.UIMenuItem;
import jvx.rad.remote.IConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.server.DirectServerConnection;

/**
 * First application with JVx, Enterprise Application Framework.
 *
 * @author René Jahn
 */
public class FirstApplication extends Application
{
 //~~

http://sourceforge.net/projects/jvx/files/latest/download
http://www.hsqldb.org
http://sourceforge.net/projects/jvxfirstapp/files/latest/download
http://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=0

2025/12/31 13:24 2/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 // Initialization
 //~~

 /**
 * Creates a new instance of <code>FirstApplication</code> with a
technology-
 * dependent launcher.
 *
 * @param pLauncher the technology dependent launcher
 * @throws Exception if initialization fails
 */
 public FirstApplication(UILauncher pLauncher) throws Exception
 {
 super(pLauncher);
 }

 //~~
 // Overwritten Methods
 //~~

 /**
 * {@inheritDoc}
 */
 @Override
 protected IConnection createConnection() throws Exception
 {
 return new DirectServerConnection();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected String getApplicationName()
 {
 return "firstapp";
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected void afterLogin()
 {
 super.afterLogin();

 //configure MenuBar

 UIMenu menuMasterData = new UIMenu();
 menuMasterData.setText("Master data");

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/12/31 13:24 3/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 UIMenuItem miDBEdit = createMenuItem
 ("doOpenDBEdit", null, "DB Edit",
 UIImage.getImage(UIImage.SEARCH_LARGE));

 menuMasterData.add(miDBEdit);

 //insert before Help
 getMenuBar().add(menuMasterData, 1);

 //configure ToolBar

 UIToolBar tbMasterData = new UIToolBar();

 UIButton butDBEdit = createToolBarButton
 ("doOpenFrame", null, "DB Edit",
 UIImage.getImage(UIImage.SEARCH_LARGE));

 tbMasterData.add(butDBEdit);

 getLauncher().addToolBar(tbMasterData);
 }

 //~~
 // Actions
 //~~

 /**
 * Opens the edit screen.
 *
 * @throws Throwable if the edit frame can not be opened
 */
 public void doOpenDBEdit() throws Throwable
 {
 DBEditFrame frame = new DBEditFrame(this);

 configureFrame(frame);

 frame.setVisible(true);
 }

} // FirstApplication

Method Description

Constructor
A specific constructor is needed, as each application is started with a launcher
that depends on the technology used. This launcher is passed over to the
application in the constructor.

createConnection
The communication protocol is initialized. A DirectServerConnection is
sufficient for our application, as both the client and the server are started in the
same VM. However, if an application server is integrated, a HttpConnection
could also be used.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/12/31 13:24 4/9 First JVx Application

Documentation - http://doc.sibvisions.com/

Method Description

getApplicationName
Sets the application name. This name is needed for the communication with the
server, as the latter uses the appropriate application configuration depending
on the application name. In our case, the application name must be “firstapp”,
as the working directory is also called ../JVxFirstApp/rad/firstapp/.

afterLogin

This method is called by the super class after a successful login. We use this
method to extend our menu and our toolbar.

It is not necessary to reset the changes after logout, as this is done
automatically by the super class.

createMenuItem

Provided by the super class to create menu entries. The first parameter
contains the name of the method which is to be called when the menu entry is
selected. The second parameter contains the command (ActionCommand),
which plays no role in our case. The text of the menu entry is to be defined in
the third parameter, and, lastly, the image for the entry is passed over.

createToolBarButton Similar to createMenuItem, except that this method creates a button which
adapts to the layout of the toolbar.

UIImage.getImage Provides a predefined image from the JVx image library.
For ease of use, we use a predefined image.

doOpenDBEdit This method is called when the menu or the toolbar button is pressed and calls
the corresponding workscreen.

configureFrame This method is provided by the super class and ensures that all frames look the
same. This includes the menu icon.

Create a Workscreen

Once we have created the application framework, we create our first workscreen with the following
code:

DBEditFrame.java

package apps.firstapp.frames;

import jvx.rad.genui.container.UIGroupPanel;
import jvx.rad.genui.container.UIInternalFrame;
import jvx.rad.genui.control.UITable;
import jvx.rad.genui.layout.UIBorderLayout;
import jvx.rad.remote.AbstractConnection;
import jvx.rad.remote.MasterConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.model.remote.RemoteDataBook;
import com.sibvisions.rad.model.remote.RemoteDataSource;

/**
 * A simple database table editor.
 *
 * @author René Jahn
 */
public class DBEditFrame extends UIInternalFrame
{

http://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=1

2025/12/31 13:24 5/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 //~~
 // Class members
 //~~

 /** the application. */
 private Application application;

 /** the communication connection to the server. */
 private AbstractConnection connection;

 /** the DataSource for fetching table data. */
 private RemoteDataSource dataSource = new RemoteDataSource();

 /** the contacts tabl. */
 private RemoteDataBook rdbContacts = new RemoteDataBook();

 //~~
 // Initialization
 //~~

 /**
 * Creates a new instance of DBEditFrame for a specific application.
 *
 * @param pApp the application
 * @throws Throwable if the remote access fails
 */
 public DBEditFrame(Application pApp) throws Throwable
 {
 super(pApp.getDesktopPane());

 application = pApp;

 initializeModel();
 initializeUI();
 }

 /**
 * Initializes the model.
 *
 * @throws Throwable if the initialization throws an error
 */
 private void initializeModel() throws Throwable
 {
 //we use a new "session" for the screen
 connection = ((MasterConnection)application.getConnection()).
 createSubConnection("apps.firstapp.frames.DBEdit");
 connection.open();

 //data connection
 dataSource.setConnection(connection);
 dataSource.open();

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/12/31 13:24 6/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 //table
 rdbContacts.setDataSource(dataSource);
 rdbContacts.setName("contacts");
 rdbContacts.open();
 }

 /**
 * Initializes the UI.
 *
 * @throws Exception if the initialization throws an error
 */
 private void initializeUI() throws Exception
 {
 UIGroupPanel group = new UIGroupPanel();
 group.setText("Available Contacts");

 UITable table = new UITable();
 table.setDataBook(rdbContacts);

 group.setLayout(new UIBorderLayout());
 group.add(table);

 //same behaviour as centered component in BorderLayout
 setLayout(new UIBorderLayout());
 add(group);

 setTitle("Contacts");
 setSize(new UIDimension(400, 500));
 }

} // DBEditFrame

Method Description
initializeModel Initialises the client objects for the access to the server or the data.
InitializeUI Laying out of the workscreen.

createSubConnection

We create a separate connection to the server. This has the advantage that a
separate business object is used on the server. This object contains all objects
needed by the workscreen. Once the work screen is closed, the used memory
is released. Moreover, each connection can have special parameters and
timeouts.
The requested business object is defined with the following class:
apps.firstapp.frames.DBEdit.

The class will be created later on.
Member Description

connection
The connection to the server specially for the workscreen. A special communication
protocol is used in the background. In our case, it mirrors the
DirectServerConnection class.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/12/31 13:24 7/9 First JVx Application

Documentation - http://doc.sibvisions.com/

Member Description

dataSource This is the data source and looks after the transfer of data between the client and the
server. The connection is used for the transfer.

rdbContacts
The model and the controller for data display.
The name contacts defines under which name the server-side business object can be
found.

Create a Business Object

Once we have created the client, we need the corresponding business object on the server so as to
define the source of the data more precisely. To do so, we use the following code:

DBEdit.java

package apps.firstapp.frames;

import jvx.rad.persist.IStorage;

import com.sibvisions.rad.persist.jdbc.DBStorage;

import apps.firstapp.Session;

/**
 * The LCO for the DBEdit WorkScreen.
 *
 * @author René Jahn
 */
public class DBEdit extends Session
{
 //~~
 // User-defined methods
 //~~

 /**
 * Returns the contacts storage.
 *
 * @return the contacts storage
 * @throws Exception if the initialization throws an error
 */
 public IStorage getContacts() throws Exception
 {
 DBStorage dbsContacts = (DBStorage)get("contacts");

 if (dbsContacts == null)
 {
 dbsContacts = new DBStorage();
 dbsContacts.setDBAccess(getDBAccess());
 dbsContacts.setFromClause("CONTACTS");
 dbsContacts.setWritebackTable("CONTACTS");
 dbsContacts.open();

http://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/12/31 13:24 8/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 put("contacts", dbsContacts);
 }

 return dbsContacts;
 }

} // DBEdit

Description
The class mirrors the business object for the DBEditFrame workscreen. The objects can only be
accessed via the SubConnection of the workscreen.
Through the class derivation of apps.firstapp.Session, it is very easy to access all objects of
the session and the Application.
Method Description

getContacts
Enables the access to the database table CONTACTS. The method name must match the
object name of the RemoteDataBook: contacts ⇒ getContacts.

Exception handling is taken over by the server.

Create a Database Connection

In the business object, we referred to the data source with the method getDBAccess(). In our case,
we use a HyperSQL database. We define the database connection in the following class:

Session.java

package apps.firstapp;

import com.sibvisions.rad.persist.jdbc.DBAccess;
import com.sibvisions.rad.persist.jdbc.IDBAccess

/**
 * The LCO for the session.
 *
 * @author René Jahn
 */
public class Session extends Application
{
 //~~
 // User-defined methods
 //~~

 /**
 * Returns access to the database.
 *
 * @return the database access
 * @throws Exception if a connection error occurs
 */

http://doc.sibvisions.com/_export/code/jvx/firstapp?codeblock=3

2025/12/31 13:24 9/9 First JVx Application

Documentation - http://doc.sibvisions.com/

 public IDBAccess getDBAccess() throws Exception
 {
 DBAccess dba = (DBAccess)get("dBAccess");

 if (dba == null)
 {
 dba = new HSQLDBAccess();

 dba.setUrl("jdbc:hsqldb:hsql://localhost/firstappdb");
 dba.setUsername("sa");
 dba.setPassword("");
 dba.open();

 put("dBAccess", dba);
 }

 return dba;
 }

} // Session

Method Description

getDBAccess
Opens a new connection to a HSQL database if this has not yet occurred.

Exception handling is taken on by the server.

The application is now fully implemented and ready to run. To be able to work with the application, we
need the database including the CONTACTS table, which we want to access. It has already been
created in the Eclipse project and can be started with ../JVxFirstApp/db/startHSqlDB.bat.

The First JVx Application

Once the database has been started, the application can be started via the run menu in Eclipse. The
finished application should now look as follows:

You can find more details about the components of a JVx application as well as step-by-step
instructions for Eclipse under Step by step introductions to the JVx application.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/firstapp

Last update: 2024/11/18 10:27

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://doc.sibvisions.com/jvx/firstapp_step-by-step
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/firstapp

	Table of Contents
	[Create an Application]
	[Create an Application]
	[Create an Application]
	Create an Application
	Create a Workscreen
	Create a Business Object
	Create a Database Connection
	The First JVx Application

