
2025/06/03 04:06 1/1 HttpConnection vs. VMConnection vs. DirectServerConnection

Documentation - https://doc.sibvisions.com/

Table of Contents



2025/06/03 04:06 1/2 HttpConnection vs. VMConnection vs. DirectServerConnection

Documentation - https://doc.sibvisions.com/

JVx is generally used to develop multi-tier applications with an emphasis on databases. To facilitate
data exchange between client and enterprise tier, a transport layer is required. This transport layer
not only has a very abstract definition in JVx, but an implementation based on http(s) already exists.

The transport or communication layer was designed protocol-independent. It is, therefore, possible to
use the communication classes for different protocol implementations without adaption.

The following is an example of protocol-independent use:

HttpConnection con = new HttpConnection(URL);
 
MasterConnection macon = new MasterConnection(pConnection);
macon.setApplicationName("demo");
macon.setUserName("demo");
macon.setPassword("demo");
macon.open();

The http protocol defines that a web or application server has to be used. This makes development
more difficult as an application server always has to be launched before the actual business logic can
be tested. Of course, lightweight application servers are available such as Jetty or the Eclipse WTP
with integrated Tomcat support. Nonetheless, relationships have to be considered and configurations
have to be made. This is something we would rather live without, especially the search for
communication errors. The fewer components have to be considered, the easier the search will be.

To support the developer as much as possible, JVx includes the VMConnection and the
DirectServerConnection in addition to the HttpConnection.

The VMConnection can be seen as equivalent to the HttpConnection with the only difference that the
communication happens without an application server and without http protocol. The server is
automatically started in the current VM and, just as with the HttpConnection, is accessed via streams.
The transferred objects are always serialized.

This type of communication makes the developer´s work much easier, but there is an even better
way.

Both the VMConnection and the HttpConnection serialize and de-serialize the objects. However, if the
server is running on the same VM as the client, serialization would not be necessary.

In this case, the DirectServerConnection is used, which means that server functions are called directly
via the server class and objects are passed on to methods directly. There is no serialization, which
positively affects performance.

Note

At no point does the developer have to take the communication protocol into account as it is
encapsulated by JVx. However, we have to be aware of the difference in operation between
DirectServerConnection and VMConnection or HttpConnection as the object serialization has to be
considered during troubleshooting. In addition, during a VMConnection or a DirectServerConnection
with implicitly started server, the server is stopped when the application is stopped.

During the development process, we recommend the use of the DirectServerConnection. If special

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+url


2025/06/03 04:06 2/2 HttpConnection vs. VMConnection vs. DirectServerConnection

Documentation - https://doc.sibvisions.com/

serializers have to be implemented, or serialization errors have to be debugged, there is no way
around the VMConnection.

During productive operation, the HttpConnection or a special IConnection implementation is required.

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/jvx/communication/connections

Last update: 2020/06/08 15:57

https://doc.sibvisions.com/
https://doc.sibvisions.com/jvx/communication/connections

	Table of Contents

