2026/01/10 09:18 1/1 REST Services

Table of Contents

HOW TE WOFKS ...ttt ettt e e e e e e e e e e e s s s bbb bbb e e raaaeeeeees 1
AVAIIADIE SEIVICEScoo i 1
AAMINISEIATION L.iiiiiiiiiiii et e e e e e e e s s s e e bbb et it e e e e e e eaanenaaanee 1
Storage Access (CRUD, Metadata)cccoooiiiiiiiiiiiiiiss e 3
(O | Yo 1 o] o TP 9
EXQMIPIESooeoeeee et e e e e e e e e e e e 10
FYe=To T 7= 14 o] H PR PTP PR PP 10
L0 L o =] OSSPSR 12

Documentation - https://doc.sibvisions.com/

2026/01/10 09:18 1/12 REST Services

We define the business logic with life cycle objects on the server side. The access authorization of an
application is checked by a security manager. The business logic is usually available via master- or
subconnections from the client.

In order to complete the technology independence, the complete business logic of an application is
also available via REST.

For the use of the REST services, the authentication with username and password is necessary. BASIC
is used as the authentication mechanism. The credentials are checked by the security manager of the
application as usual. You do not need to change a source code line to integrate the REST services.

How It Works

The REST implementation in JVx has been implemented with Restlet. To use the REST services, the
deployment descriptor must be configured as follows:

<servlet>
<servlet-name>RestletServlet</servlet-name>
<servlet-class>org.restlet.ext.servlet.ServerServlet</servlet-class>

<init-param>
<param-name>org.restlet.application</param-name>
<param-value>com.sibvisions.rad.server.http.rest.RESTAdapter</param-
value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>RestletServlet</servlet-name>
<url-pattern>/services/rest/*</url-pattern>
</servlet-mapping>

With this configuration, the following services are available:

Available Services

Administration

Various services are available for the administration. These can only be used by POST requests in the
standard case. However, if certain custom services have been registered, they can also be addressed
via GET request.

The following services are available by default:

e Test authentication
e Change password
e Check database

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/jvx/server/lco/objects
https://doc.sibvisions.com/jvx/server/security/manager
https://en.wikipedia.org/wiki/Basic_access_authentication
http://www.restlet.org/

2026/01/10 09:18 2/12 REST Services

Test Authentication

Test URL:
http://server:port/webapp/services/rest/APPLICATION NAME/ admin/testAuthentic
ation

or
http://server:port/webapp/services/rest/APPLICATION_NAME/ admin/testAuthentic
ation/parameter

The request requires a HashMap in JSON format.

Example:

{ "username" : "admin",
"password" : "adminpassword"

}

The username can also be omitted. In this case, the parameter from the URL will be used as the
username.

POST-Response

If the login was successful, no response is generated and the status code is 204
(SUCCESS_NO_CONTENT).

Change Password

Test URL:

http://server:port/webapp/services/rest/APPLICATION_NAME/ admin/changePasswor
d

or
http://server:port/webapp/services/rest/APPLICATION _NAME/ admin/changePasswor
d/parameter

The request requires a HashMap in JSON format.

Example:

{ "username" : "admin",
"oldpassword" : "oldpassword",
"newpassword" : "newpassword"

}

The username can also be omitted. In this case, the parameter from the URL will be used as the
username.

Documentation - https://doc.sibvisions.com/

2026/01/10 09:18 3/12 REST Services

POST-Response

If the password has been changed, no response is generated and the status code is 204
(SUCCESS_NO_CONTENT).

Check database

Test URL:
http://server:port/webapp/services/rest/APPLICATION_NAME/ admin/checkDB

GET-Response

If the check was successful, no response is generated and the status code is 204
(SUCCESS_NO_CONTENT). If database is not available, status code 500 (SERVER_ERROR_INTERNAL)
will be returned. It's also possible that the configuration can't be found. In this case, status code 503
(SERVER_ERROR_SERVICE_UNAVAILABLE) will be returned.

Custom Services

If you want to register your own service at runtime, this can be done by

UserService.register(String pApplicationName, String pAction,
ICustomServiceDelegate pDelegate
UserService.unregister(String pApplicationName, String pAction

The service can be addressed either via GET or POST request, depending on whether
ICustomServiceGetDelegate or ICustomServicePostDelegate is used.

Test URL:

http://server:port/webapp/services/rest/APPLICATION_NAME/ admin/ACTION

or

http://server:port/webapp/services/rest/APPLICATION_NAME/ admin/ACTION/parame
ter

Storage Access (CRUD, Metadata)

Select
Insert
Update
Delete
Metadata

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/10 09:18 4/12 REST Services

GET-Request (Select)

Query all data:
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME

Query exactly one record:
http://server:port/webapp/services/rest/APPLICATION NAME/LIFECYCLE_ CLASS/data
/STORAGE_NAME/PRIMARY_KEY

If the PK is composed of several columns, the query parameters must be used:
http://server:port/webapp/services/rest/APPLICATION NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME?PKCOLUMN=VALUE&PKCOLUMN2=VALUE2

The query parameters can also be used to perform filtering with columns that are not PK columns.

Read more about complex query parameters.

GET-Response

The response always contains a list of HashMaps in JSON format. The column name is used as the key.

Example:

[{ "ID" : O,
"POST _ID" : 127,
“POST PLZ" : "1127",
"STIEGE" : 8,
"STRA ID" : 68,
"STRA_NAME" : "Strasse (69)",
"HAUSNUMMER" : 37,
"TUERNUMMER" : 79

b
{ "IDp" : 1,
"POST ID" : 50,
"POST PLZ" : "1050",
"STIEGE" : 7,
"STRA ID" : 55,
"STRA NAME" : "Strasse (56)",
"HAUSNUMMER" : 37,
"TUERNUMMER" : 60
b

POST-Request (Insert)

Insert a new record:
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/data

Documentation - https://doc.sibvisions.com/

https://blog.sibvisions.com/2017/10/30/jvx-rest-interface-update/

2026/01/10 09:18 5/12 REST Services

/STORAGE_NAME

The request requires a HashMap in JSON format. The column name is used as the key.

Example:

{ "POST ID" : "O",
"STRA ID" : "O",
"HAUSNUMMER" : "9999"

}

POST-Response

The response returns the complete record in JSON format:

{ "ID" : 1008,

“POST _ID" : O,

“"POST PLZ" : "1000",
"STIEGE" : null,

"STRA _ID" : 0,

"STRA NAME" : "Strasse (1)",

"HAUSNUMMER" : 9999,
"TUERNUMMER" : null

PUT-Request (Update)

Update a record with Primary Key:
http://server:port/webapp/services/rest/APPLICATION _NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME/PRIMARY_KEY

If the PK is composed of several columns, or if the records are not to be identified via the PK, the
query parameters must be used:
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME?COLUMN=VALUE&COLUMN2=VALUE2

The request requires a HashMap in JSON format. The column name is used as the key.

Example:

{ IIIDII : II123II'
"HAUSNUMMER" : "0",
"STIEGE" : "0",
"TUERNUMMER" : "O"

}

It should be noted that PK columns are not updated.

Documentation - https://doc.sibvisions.com/

2026/01/10 09:18 6/12 REST Services

PUT-Response

The response returns the complete record in JSON format:

{ "ID" : 0,
"POST ID" : 127,
“POST PLZ"™ : "1127",
"STIEGE" : "0",
"STRA ID" : 68,
"STRA_NAME" : "Strasse (69)",
"HAUSNUMMER" : "0",
"TUERNUMMER" : "0O"
}

DELETE-Request (Delete)

Delete exactly one record:
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME/PRIMARY_KEY

If the PK is composed of several columns, the query parameters must be used:
http://server:port/webapp/services/rest/APPLICATION NAME/LIFECYCLE_ CLASS/data
/STORAGE_NAME?PKCOLUMN=VALUE&PKCOLUMN2=VALUE2

DELETE-Response

The response returns the number of deleted records in JSON format (as number):

42

OPTIONS-Request (Metadata)

Request Metadata:
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/data
/STORAGE_NAME

OPTIONS-Response

The response returns the metadata in JSON format:

{ "autoIncrementColumnNames" : ["ID" 1,
"columnMetaData" : [{ "allowedValues" : null,
"autoIncrement" : true,

"dataType" : 3,
"defaultValue" : null,

Documentation - https://doc.sibvisions.com/

REST Services

2026/01/10 09:18 7/12
"label" "Id",
"linkReference" : null,
"name" "ID",
"nullable" : false,
"precision" 10,
"scale" : 0,

"signed" : true,
"“sqltype" : 4,
"writable" : true

}

{ "allowedValues" : null,
"autoIncrement" : false,
"dataType" : 3,
"defaultValue" : null,
"label" "Post Id",
"linkReference" : null,
"name" "POST ID",
"nullable" : false,
"precision” 10,
"scale" : 0O,

"signed" : true,
"sqltype" : 4,
"writable" : true

3

{ "allowedValues" : null,
"autoIncrement" : false,
"dataType" 12,
"defaultValue" : null,
"label" "Plz",
“linkReference" : { "columnNames" ["POST ID", "POST PLZ"],

"referencedColumnNames" ["ID", "PLZ"],

"referencedStorage"

".subStorages.postleitzahlen"

"name"
"nullable"
"precision"
"scale" : 0,
"signed"
"sqltype"
"writable"

12,

{ "allowedValues"
"autoIncrement"
"dataType" : 3,
"defaultValue"
"label" "Stra
"linkReference"
"name"
"nullable"
"precision"

: false,

I

"POST PLZ",
: false,
: 2147483647,

: false

: null,
: false,

: null,
Id",
: null,
"STRA ID",
: false,

10,

Documentation - https://doc.sibvisions.com/

2026/01/10 09:18 8/12

REST Services

}I
{

"scale" : 0,
"signed" : true,
"sqltype" : 4,
"writable" : true

"allowedValues" : null,
"autoIncrement" : false,
"dataType" : 12,
"defaultValue" : null,

"label" : "Name",
"linkReference" : { "columnNames"
"referencedColumnNames"
"referencedStorage"
+,
"name" : "STRA NAME",

"nullable" : false,
"precision" : 2147483647,
"scale" : 0,

"signed" : false,
"sqltype" : 12,
"writable" : false

"allowedValues" : null,
"autoIncrement" : false,
"dataType" : 3,
"defaultValue" : null,
"label" : "Hausnummer",
"linkReference" : null,
"name" : "HAUSNUMMER",
"nullable" : false,
“precision" : 10,
"scale" : 0O,

"signed" : true,
"sqltype" : 4,
"writable" : true

"allowedValues" : null,
"autoIncrement" : false,
"dataType" : 3,
"defaultValue" : null,

“label" : "Stiege",
"linkReference" : null,
"name" : "STIEGE",
"nullable" : true,
"precision" : 10,
"scale" : 0,

"signed" : true,
"sqltype" : 4,
"writable" : true
"allowedValues" : null,

["STRA ID",

“STRA NAME"],
IINAMEII] ,
.subStorages.strassen"

Documentation - https://doc.sibvisions.com/

2026/01/10 09:18 9/12 REST Services

"autoIncrement" : false,
"dataType" : 3,
"defaultValue" : null,
"label" : "Tuernummer",
"linkReference" : null,
"name" : "TUERNUMMER",
"nullable" : true,
“precision" : 10,
"scale" : 0O,
"signed" : true,
"sqltype" : 4,
"writable" : true
}
Iy
"columnNames" : ["ID",
"POST ID",
"POST PLZ",
"STRA ID",
"STRA NAME",
"HAUSNUMMER" ,
"STIEGE",
"TUERNUMMER"
1,
“primaryKeyColumnNames" : ["ID"],
"representationColumnNames" : ["ID",
"POST _ID",
"POST PLZ",
"STRA ID",
"STRA NAME",
"HAUSNUMMER" ,
"STIEGE",
"TUERNUMMER"

Call Actions

The server-side actions can be called directly from the life cycle object as well as from available
business objects. It's also possible to use parameters.

e Action without parameter
e Action with parameter

GET-Request

Call a server-side action (without parameter):
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/acti

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/jvx/communication/calling_server_action

2026/01/10 09:18 10/12 REST Services

on/ACTION_NAME

Call a method from a business object (without parameter):
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/obje
ct/0BJECT_NAME/ACTION_NAME

GET-Response

The response returns the return value of the action in JSON format.

POST/PUT-Request

Call a serer-side action (with parameter):
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/acti
on/ACTION_NAME

Call a method from a business object (with parameter):
http://server:port/webapp/services/rest/APPLICATION_NAME/LIFECYCLE_CLASS/obje
ct/0BJECT_NAME/ACTION_NAME

The request requires an array of objects populated with the parameters for the action.
Example:

Action:

String calculate(Number pFirst, Number pSecond

pFirst.intValue pSecond.intValue

JSON Request:

[123,1]
POST/PUT-Response

The response returns the return value of the action in JSON format.

Examples

Integration

Using php:

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+number
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+number

2026/01/10 09:18 11/12

REST Services

$ch = curl init
curl setopt($ch

CURLOPT _URL, 'https://<server>/DB/services/rest/League/Standings/data/All"’

curl setopt($ch, CURLOPT RETURNTRANSFER

curl setopt($ch, CURLOPT HTTPAUTH, CURLAUTH BASIC
curl setopt($ch, CURLOPT USERPWD, "user:password"
//curl _setopt($ch, CURLOPT CONNECTTIMEOUT, 5);

$json = json decode(curl exec($ch), true
curl close($%ch

Using Javascript:

rest.html

<html>
<head>
<script>
function doRest() {
const http = new XMLHttpRequest();

const
url="https://<server>/DB/services/rest/League/Standings/action/getResul
ts';

http.open("POST", url, true, 'user', 'password');

http.withCredentials = true;

http.send("[88]");

http.onreadystatechange=(e)=>

{

if (http.readyState == 4)

{

console.log(atob(eval(http.responseText)));

}

}
}
</script>
</head>
<body>
<button type="button" onclick="doRest()">REST call</button>
</body>
</html>

Angular]S 4 with VisionX and JVx REST services
AngularJS with JVx in action
Oracle JET with VisionX/JVx

Documentation - https://doc.sibvisions.com/

http://www.php.net/curl_init
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/curl_setopt
http://www.php.net/json_decode
http://www.php.net/curl_exec
http://www.php.net/curl_close
https://doc.sibvisions.com/_export/code/jvx/common/util/rest?codeblock=14
http://december.com/html/4/element/html.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/html.html
https://blog.sibvisions.com/2017/10/23/angularjs-4-with-visionx-and-jvx-rest-services/
https://blog.sibvisions.com/2015/06/15/angularjs-with-jvx-in-action/
https://blog.sibvisions.com/2016/02/29/using-oracle-jet-with-visionxjvx/

2026/01/10 09:18 12/12 REST Services

JUnit Tests

TestCallService for the Lifecycle objects: Session and Address

Note

For action calls, the correct data types must be used! In general, it is best to dispense with primitive
data types, as parameters, and instead of using arrays, the List Interface should be used. It is also
recommended to use Number for all numerical values. This avoids problems due to JSON serialization.

The life cycle name should be the fully qualified class name, with package. If only the simple class
name is used, JVx will try to find a matching class. If several classes are considered, then no class is
used. You can optionally define a search path in the config.xml of the application:

<application>
<rest>
<search>
<path>/com/sibvisions/app/myapp</app>
<path>/com/sibvisions/app/myapp/screens/sub/</app>
</search>

</rest>
</application>

Additional information about this feature is available in our Support System.

From:
https://doc.sibvisions.com/ - Documentation

Permanent link: (]
https://doc.sibvisions.com/jvx/common/util/rest

Last update: 2022/11/17 11:13

Documentation - https://doc.sibvisions.com/

https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/library/test/com/sibvisions/rad/server/http/rest/TestCallService.java
https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/library/rad/apps/demo/src.server/demo/Session.java
https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/library/rad/apps/demo/src.server/demo/special/Address.java
https://oss.sibvisions.com/index.php?do=details&task_id=534
https://doc.sibvisions.com/
https://doc.sibvisions.com/jvx/common/util/rest

	Table of Contents
	How It Works
	Available Services
	Administration
	Test Authentication
	POST-Response

	Change Password
	POST-Response

	Check database
	GET-Response

	Custom Services

	Storage Access (CRUD, Metadata)
	GET-Request (Select)
	GET-Response
	POST-Request (Insert)
	POST-Response
	PUT-Request (Update)
	PUT-Response
	DELETE-Request (Delete)
	DELETE-Response
	OPTIONS-Request (Metadata)
	OPTIONS-Response

	Call Actions
	GET-Request
	GET-Response
	POST/PUT-Request
	POST/PUT-Response

	Examples
	Integration
	JUnit Tests

