
2025/12/31 13:52 1/1 Data Filtering

Documentation - http://doc.sibvisions.com/

Table of Contents

2025/12/31 13:52 1/2 Data Filtering

Documentation - http://doc.sibvisions.com/

Displaying data from a database table is a basic requirement for database applications. Restricting
the data volume is another requirement. This can be done on the client side as well as at the
database.

At the client, data is filtered in the main memory.However, this requires that all data is transferred
from the server/database to the client. This limits communication and should not be an issue for small
data volume, but it should be noted that data has to be updated manually!

Filtering at the database is the default setting and is usually the better choice. Here, the sorting
conditions are included in the SQL command and the data volume is therefore limited by the
database. Only the limited data is provided to the client and, due to load-on-demand, only the
required amount is transferred. In addition, the transferred data is always current.

Example

Our application manages contact information (people, addresses, etc.). One of our forms has a field in
which a search can be entered. A button is available to start a wildcard search by first name, last
name, street address, or city.

The following client action achieves the desired filtering:

/**
 * Searches the contacts with the search text.
 *
 * @throws ModelException if the search fails
 */
public void doFilter() throws ModelException
{
 String sText = (String)drSearch.getValue("SEARCH");

 if (sText == null)
 {
 //reset the filter: show all rows
 rdbContacts.setFilter(null);
 }
 else
 {
 //set the filter: show only found rows
 ICondition filter = new LikeIgnoreCase("FIRSTNAME", "*" + sText +
"*").or(
 new LikeIgnoreCase("LASTNAME", "*" + sText + "*").or(
 new LikeIgnoreCase("STREET", "*" + sText + "*").or(
 new LikeIgnoreCase("TOWN", "*" + sText + "*"))));
 rdbContacts.setFilter(filter);
 }
}

The filter or condition is applied to a RemoteDataBook and is constructed just as it would in SQL. The
search is based on our condition for the appearance of the entered text, either first name, last name,
the street, or the city.

http://doc.sibvisions.com/jvx/client/model/data/database
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/12/31 13:52 2/2 Data Filtering

Documentation - http://doc.sibvisions.com/

For sorting at the client, the RemoteDataBook would have to be configured as follows:

rdbContacts.setMemFilter(true);

The following filter classes are available:

ContainsIgnoreCase
EndsWithIgnoreCase
Equals
Greater
GreaterEquals
Less
LessEquals
Like
LikeIgnoreCase
LikeReverse
LikeReverseIgnoreCase
StartsWithIgnoreCase
Not
Or
And

Please note that a filter must always be reassigned after changing it, e.g.:

filter = filter.and (new Equals ("CODE", "A-123"). and (new Equals ("REF",
"re133")));

Without the assignment of filter = filter … the filter is not changed.

For further details, see javadoc.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/client/model/data/filter

Last update: 2024/11/18 10:32

https://www.sibvisions.com/files/jvx/current/api/jvx/rad/model/condition/package-summary.html
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/client/model/data/filter

	Table of Contents
	[Example]
	[Example]
	[Example]
	Example

