
2025/02/11 21:04 1/1 Temporary Values

Documentation - http://doc.sibvisions.com/

Table of Contents
Global Values 2 ..

2025/02/11 21:04 1/2 Temporary Values

Documentation - http://doc.sibvisions.com/

Sometimes it's important to store/cache temporary information. It's no problem to create or use a
variable to save such information. This is also the recommended solution because it makes the code
readable and references can be found. However, sometimes it's good to have an alternative to clean
code because sometimes you want to add information to existing objects quickly and easily.

Instance Values

As an example, you could open a work-screen and add additional metadata like read-only or allowed
users. To solve this problem, you could save the screen in a HashMap with metadata as values. This
information should be saved in the application because the screen has access to the application. This
makes things a little bit complicated.

To make everything easier, every UI resource (e.g., a component) has the methods:

public Object pubObject(String pName, Object pValue);
public Object getObject(String pName);
public Collection<String> getObjectNames();

public ResourceHandler eventResourceChanged();
public ResourceHandler eventResourceChanged(String pObjectName);

So, it's super easy to add temporary information to any UI resource. We recommend to use constants
as object names in order to find references easily. If you use hardcoded strings, it will be hard to find
the usage in your whole application.

Here's a short example:

public void doOpenStatus()
{
 IWorkScreen wosc =
getApplication().openWorkScreen(StatusWorkScreenc.class.getName());

 ((WorkScreen)wosc).putObject(IConstants.STATE, ScreenState.New);
}

We save a simple “state” for the screen directly in the screen instance.

It's also possible to use the launcher or application, e.g.,

@Override
protected void afterLogin()
{
 super.afterLogin();

 getLauncher().putObject(IConstants.APPMODE, AppMode.AUTHENTICATED);
}

We save the “application mode” in the launcher and this information is available in every screen or
any other class which has access to the launcher. It's not possible to add variables to the launcher or
to change the class directly, so it's a good alternative to use custom objects to add metadata and to

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/02/11 21:04 2/2 Temporary Values

Documentation - http://doc.sibvisions.com/

avoid HashMap for simple caching.

Global Values

We have another alternative for the above instance values. It's also possible to use our ObjectCache,
e.g.,

//available for 1 minute
ObjectCache.put(IConstants.APPMODE, AppMode.AUTHENTICATED, 60000);

The ObjectCache is a static cache and can be used to use values without application context. It's also
possible to use an ObjectCacheInstance which isn't static.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/client/gui/temporary_values

Last update: 2021/02/01 12:47

http://doc.sibvisions.com/jvx/common/util/classes#the_object_cache
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/client/gui/temporary_values

	Table of Contents
	[Instance Values]
	[Instance Values]
	Instance Values

	Global Values

