2025/10/02 08:57 1/1 Exception Handling

Table of Contents

Documentation - http://doc.sibvisions.com/



2025/10/02 08:57 1/4 Exception Handling

Exception handling is very important for applications. It's necessary to visualize unexpected
exceptions and to handle expected exceptions. Exception handling should be easy, centralized, and
shouldn't blow up the application code. Isn't it boring to catch exceptions after unimportant code
blocks?

This could be boilerplate code:

Email email prepareEmail (dataBook
sendEmail (email

MessagingException me
showError(me

If you catch exceptions to show error messages, it's boilerplate code. If you catch exceptions to do
specific error handling, it's not. Usually an application has both use-cases.

With JVx, we tried to reduce code for exception handling to a bare minimum. We delegate “all”
framework exceptions to an ExceptionHandler. The ExceptionHandle is more or less a delegator.

The ExceptionHandler doesn't visualize an exception. It forwards exceptions to a listener list and is
responsible for logging. The application itself is responsible for visualization because only the
application knows how to visualize an exception - as a popup, as a status in a specific area, etc.

The standard JVx application already supports visualization of exceptions because it's a registered
exception listener. The method

void handleException(Throwable pThrowable

error(pThrowable

error null error.isClosed

error createError
error.eventWindowClosed () .addListener , "doErrorClosed"

configureFrame(error

invokelLater , "showErrorDialog"

error.addError(pThrowable

Throwable th

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/02 08:57 2/4 Exception Handling

//forwarding to the launcher 1is the only possibility
getLauncher().handleException(th

getLauncher().handleException(pThrowable

will do the job. Simply override the method to do what you want or register your own listener and
remove the application and exception listener.

The default implementation makes it super easy to show exceptions without additional code. Suppose
we have the following action:

UIButton button UIButton("Send E-Mail"
button.eventAction().addListener , "doSendEmail"

void doSendEmail

getConnection().callAction("sendEmail"

The callAction method will throw throwable because it's a remote procedure call and all remote
procedure calls will throw throwable instead of an exception. JVx doesn't define custom exceptions
because Java has enough, and it wasn't necessary to wrap exceptions for remote calls. The
application is able to define custom exceptions in remote procedure calls, but JVx doesn't wrap
exceptions. It's nice for an application developer to get the thrown exception instead of unwrapping a
caught exception to get the original exception.

To make our action working, we could do the following:
void doSendEmail Throwable
getConnection().callAction("sendEmail"
It's good enough to add throws throwable to the method definition. The event mechanism of JVx will
do the rest because it forwards exceptions to ExceptionHandler:

@Override
Object dispatchEvent(Object... pEventParameter

.dispatchEvent (pEventParameter
Throwable pThrowable

ExceptionHandler.raise(pThrowable
null

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/02 08:57 3/4 Exception Handling

If you need custom exception handling, simply do it:

void doSendEmail Throwable

getConnection().callAction("sendEmail"
MessagingException me

showEmailProblem(me

This will handle MessagingException and all other exceptions will be handled from the default
implementation. It's also possible to ignore the default implementation:

void doSendEmail

getConnection().callAction("sendEmail"
MessagingException me
showEmailProblem(me
Throwable th

handleProblem(th

Please, centralize your custom exception handling to keep things simple and to reduce complexity.

It's also possible to use standard exception visualization from your custom code:

void doSendEmail

getConnection().callAction("sendEmail"
MessagingException me
showEmailProblem(me

Throwable th

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/10/02 08:57 4/4 Exception Handling

ExceptionHandler.show(th

The ExceptionHandler has two relevant methods for your exceptions:

void raise(Throwable pThrowable
void show(Throwable pThrowable

The raise method will interrupt code execution while show will continue.

The ExceptionHandler knows one specific exception which will be handled separately. It's the
SilentAbortException. If you throw a SilentAbortException, no listener will be notified about the
exception. This also means that your application doesn't visualize the exception.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: (]
http://doc.sibvisions.com/jvx/client/gui/exceptionhandling

Last update: 2020/07/08 17:36

Documentation - http://doc.sibvisions.com/


http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/client/gui/exceptionhandling

	Table of Contents

