
2025/12/26 04:28 1/1 Default Werte aus der Datenbank berücksichtigen

Documentation - https://doc.sibvisions.com/

Table of Contents

2025/12/26 04:28 1/3 Default Werte aus der Datenbank berücksichtigen

Documentation - https://doc.sibvisions.com/

Hinter einer gut geplanten Datenbank Anwendung steckt immer ein gut designtes Datenmodell.
Dieses erfüllt im Idealfall die 3. Normalform, oder zumindest ein vernünftiges Mittel aus 2. und 3.
Normalform. Das User Interface visualisiert im einfachsten Fall das Datenmodell und ermöglicht die
Erfassung von Stamm- und Bewegungsdaten.

Die Datenbank bietet jedoch sehr viele Vorteile die man im User Interface nutzen möchte, ohne dabei
viel Zeit zu verlieren. Einer dieser Vorteile ist der “Default Wert” von Spalten in Tabellen.

Häufig existieren sogenannte Flag Spalten, die bereits in der Datenbank einen Default Wert erhalten.
Ein klassisches Beispiel hierfür sind J/N (= Ja/Nein) Spalten. Der Default Wert ist z.B.: N (= Nein).

Der Entwickler müsste im User Interface beim Erstellen eines Datensatzes diese Default Werte
berücksichtigen und für den Anwender vorbelegen. Das ist einerseits eine immer wiederkehrende
Tätigkeit und andererseits sehr Fehleranfällig. Außerdem möchte der Entwickler lieber knifflige
Probleme lösen anstatt seine Zeit mit langweiligen Tätigkeiten zu verbringen.

Und genau hier beginnt die Arbeit von JVx. Das Framework erkennt die Default Werte von Spalten
vollautomatisch und übernimmt die definierten Werte beim Erstellen von neuen Datensätzen, direkt
ins User Interface. Es ist jedoch zu beachten, daß nur Konstante Default Werte berücksichtigt werden,
da Funktionsaufrufe immer Datenbankabhängig sind und somit Logik enthalten können!

Anwendungsbeispiel

Unsere Applikation enthält eine Benutzerverwaltung für die Erstellung und Bearbeitung von
Applikations-Benutzern. Die zugrunde liegende Datenbank Tabelle wurde wie folgt erstellt (Oracle
Syntax):

create.sql

CREATE TABLE USERS
(
 ID NUMBER(16) NOT NULL,
 USERNAME VARCHAR2(200) NOT NULL,
 PASSWORD VARCHAR2(200),
 CHANGE_PASSWORD CHAR(1) DEFAULT 'N' NOT NULL,
 ACTIVE CHAR(1) DEFAULT 'Y' NOT NULL,
 VALID_FROM DATE,
 VALID_TO DATE,
 CREATED_BY VARCHAR2(200) NOT NULL,
 CREATED_ON DATE DEFAULT sysdate NOT NULL,
 CHANGED_BY VARCHAR2(200),
 CHANGED_ON DATE,
 TITLE VARCHAR2(64),
 FIRST_NAME VARCHAR2(200),
 LAST_NAME VARCHAR2(200),
 EMAIL VARCHAR2(200),
 PHONE VARCHAR2(200),
 MOBILE VARCHAR2(200)
);

-- Create/Recreate primary, unique and foreign key constraints

https://doc.sibvisions.com/_export/code/de/jvx/server/storage/dbdefault_values?codeblock=0

2025/12/26 04:28 2/3 Default Werte aus der Datenbank berücksichtigen

Documentation - https://doc.sibvisions.com/

ALTER TABLE USERS
 ADD CONSTRAINT USER_PK PRIMARY KEY (ID);

ALTER TABLE USERS
 ADD CONSTRAINT USER_UK UNIQUE (USERNAME);

Wir benötigen nun ein Server Objekt für den Zugriff auf die Datenbank bzw. Tabelle:

public DBStorage getUsers() throws Exception
{
 DBStorage users = (DBStorage)get("users");
 if (users == null)
 {
 users = new DBStorage();
 users.setDBAccess(getDBAccess());
 users.setWritebackTable("USERS");
 users.setDefaultSort(new SortDefinition("USERNAME"));
 users.open();

 put("users", users);
 }
 return users;
}

Am Client erstellen wir nun ein Objekt für den Server Zugriff:

rdbUsers.setDataSource(dataSource);
rdbUsers.setName("users");
rdbUsers.open();
rdbUsers.getRowDefinition().setTableColumnNames(
 new String[] {"USERNAME", "ACTIVE",
"CHANGE_PASSWORD"});

Wenn wir nun einen neuen Benutzer erstellen, so werden die Felder “ACTIVE” und
“CHANGE_PASSWORD” automatisch mit den Default Werten, aus der Datenbank, befüllt. Das Feld
“ACTIVE” erhält den Wert “Y” und “CHANGE_PASSWORD” erhält den Wert “N”.

Um die Default Werte zu ignorieren, können folgende Methoden verwendet werden:

//per instance
users.setDefaultValue(false)

//for all instances (static)
DBStorage.setDefaultDefaultValue(false)

Wenn in der Datenbank keine Default Werte definiert wurden, können diese auch über das API gesetzt
werden:

users.open();

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/12/26 04:28 3/3 Default Werte aus der Datenbank berücksichtigen

Documentation - https://doc.sibvisions.com/

//sets the default value to "X"
users.getMetaData().getColumnMetaData("ACTIVE").setDefaultValue("X");

Falls auf die Verwendung der Default Werte verzichtet wird, so erreicht man die Default Belegung
über die Verwendung von Client seitigen events wie z.B.

rdbUsers.eventAfterInserting().addListener(this, "afterInserting");
...
public void afterInserting(DataBookEvent pEvent) throws Exception
{
 pEvent.getChangedDataBook().setValue(COLUMN, VALUE);
}

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/de/jvx/server/storage/dbdefault_values

Last update: 2018/02/02 12:55

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
https://doc.sibvisions.com/
https://doc.sibvisions.com/de/jvx/server/storage/dbdefault_values

	Table of Contents
	[Anwendungsbeispiel]
	[Anwendungsbeispiel]
	[Anwendungsbeispiel]
	Anwendungsbeispiel

