2026/01/28 18:11 1/1 Lifecycle Objekte erstellen

Table of Contents

Documentation - https://doc.sibvisions.com/

2026/01/28 18:11 1/6 Lifecycle Objekte erstellen

Die Lifecycle Objekte von JVx sind einerseits Container fir Objekte bzw. Methoden und andererseits
ermaglichen sie die Wiederverwendung von Funktionalitaten durch Vererbung. Als Lifecycle Objekt
kann auf Wunsch jedes POJO verwendet werden. Dadurch wirde man aber auf den grollen Vorteil der
Wiederverwendung verzichten.

Wir empfehlen eine spezielle Verwendung und eine vordefinierte Klassenhierarchie um alle Vorteile
ohne Einschrankungen zu nutzen!

Konfiguration

Im Idealfall wird je ein Lifecycle Objekt flr die Applikation und fur die MasterSession definiert.

Die Definition wird in der Applikationskonfiguration durchgefuhrt:

<application>

<!-- predefined life-cycle object names -->

<lifecycle>
<application>com.sibvisions.apps.showcase.Application</application>
<mastersession>com.sibvisions.apps.showcase.Session</mastersession>

</lifecycle>

</application>

Die Klassenbezeichnung fur die MasterSession kann auch beim Erstellen der MasterConnection durch
setLifeCycleName definiert werden.

Jede MasterConnection (Client) bendtigt eine MasterSession (Server) um auf den Server zugreifen zu
kénnen.

Das Lifecycle Objekt flr die Applikation ist optional und wird nur fur Applikationsubergreifende
Aufgaben bendtigt.

Klassenhierarchie

Wir erklaren die Klassenhierarchie anhand der Showcase Applikation.

Das Applikations Lifecycle Objekt:

Application.java

com.sibvisions.apps.showcase

/**

* Application object for Showcase application.

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/de/jvx/server/lco/lifecycle
https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=1

2026/01/28 18:11 2/6 Lifecycle Objekte erstellen

*/
Application GenericBean

// Application

Die Klasse GenericBean Ubernimmt die Objektverwaltung. Aus diesem Grund leiten wir davon ab.

Das MasterSession Lifecycle Objekt:

Session.java
com.sibvisions.apps.showcase
/**
* Session object for Showcase application.
*/
Session Application

A S
// User-defined methods
[[~ e
/**

* Returns access to the database.
k
* @return the access to the database
* @throws Exception if the datasource can not be opened
*/
DBAccess getDBAccess Exception

DBAccess dba DBAccess)get ("dBAccess"
dba null

IConfiguration cfgSession
SessionContext.getCurrentSessionConfig

dba HSQLDBAccess

//read the configuration from the config file
dba.setConnection(cfgSession.getProperty
"/application/securitymanager/database/url"
dba.setUser(cfgSession.getProperty
"/application/securitymanager/database/username"
dba.setPassword(cfgSession.getProperty
"/application/securitymanager/database/password"
dba.open

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/28 18:11 3/6

Lifecycle Objekte erstellen

put ("dBAccess", dba

dba

J**

* Gets the source code access object.
*

* @return the source access object
*/
SourceCode getSourceCode
SourceCode sc SourceCode)get("sourceCode"
sC null

scC SourceCode

put("sourceCode", sc

SC

// Session

Wir leiten von Application ab um vollen Zugriff auf alle Methoden und Objekte des Vorgangers zu
erhalten. Durch die generelle Ableitung von GenericBean wird die Verfugbarkeit der Objekte

gewahrleistet.

Jede SubConnection (Client), sprich jeder WorkScreen erhalt ein eigenes Lifecycle Objekt:

Educations.java

com.sibvisions.apps.showcase. frames

/**

* The <code>Educations</code> class is the life-cycle object for

<code>EducationsFrame</code>.
w5/
Educations Session

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=3

2026/01/28 18:11 4/6 Lifecycle Objekte erstellen

/**

* Returns the educations storage.
*

* @return the Educations storage
* @throws Exception if the initialization throws an error
*/

DBStorage getEducations Exception

DBStorage dbsEducations DBStorage)get("educations"
dbsEducations null

dbsEducations DBStorage
dbsEducations.setDBAccess (getDBAccess
dbsEducations.setFromClause("V EDUCATIONS"
dbsEducations.setWritebackTable("EDUCATIONS"
dbsEducations.open

put("educations", dbsEducations

dbsEducations

// Educations

Das Lifecycle Objekt wird abgeleitet von Session um auch hier den vollen Zugriff auf alle Methoden
und Objekte der Vorganger zu erhalten.

Anhand des Aufrufs von getDBAccess sehen wir bereits den Vorteil dieser Technik. Wir 6ffnen die
Datenbankverbindung an zentraler Stelle und alle Ableitungen haben Zugriff auf die Verbindung.

Durch dieses Vorgehen werden Anderungen an zentraler Stelle durchgefihrt, wir sparen Zeit und
|I6sen Abhangigkeiten auf.

GenericBean

Anhand des vorherigen Beispiels ist zwar gut zu erkennen, das aufgrund der Ableitungen auch alle
Methoden vererbt werden, doch Ublicherweise wirde doch jede Instanz ihre eigenen Objekte
verwalten. Wir wiirden also erwarten, daB jede Instanz von Educations durch den Aufruf von
getDBAccess auch eine neue Datenbankverbindung herstellt!

Und genau darin liegt der Unterschied zwischen POJO und GenericBean.

Wenn von GenericBean abgeleitet wird, sorgt der Server dafur, dal8 Instanzen wiederverwendet
werden. In unserem konkreten Beispiel wird bei der Instanzierung von Educations die Session Instanz
als Parent gesetzt. Die Session Instanz selbst erhalt als Parent die Application Instanz. Dadurch liefert
unser Aufruf von getDBAccess immer ein und dieselbe Datenbankverbindung.

Documentation - https://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/28 18:11 5/6 Lifecycle Objekte erstellen

Eine weitere Besonderheit von GenericBean ist der Zugriff auf die verwalteten Objekte durch deren
Namen:

DBStorage dbsEducations DBStorage)get("educations"

Wir kénnen also entweder getEducations() oder get(“educations”) aufrufen und bekommen in beiden
Fallen dieselbe Instanz geliefert. Damit dies funktioniert muss das gewunschte Objekt instanziert und
hinterlegt werden:

dbsEducations DBStorage
dbsEducations.setDBAccess(getDBAccess
dbsEducations.setFromClause("V EDUCATIONS"
dbsEducations.setWritebackTable("EDUCATIONS"
dbsEducations.open

put("educations", dbsEducations

Ein eher ungewdhnlicher jedoch sparsamer Ansatz des GenericBean ist die Objektinitialisierung ohne
get Methoden. In diesem Fall wird nur per Name auf die Objekte zugegriffen.

Unsere Educations Lifecycle Objekt wirde wie folgt implementiert werden:

Educations.java

Educations Session
[[~~~
// User-defined methods
[e P e e e
/**

* Initializes the educations storage.
*

* @return the educations storage
* @throws Exception if the initialization throws an error

*/
@SuppressWarnings("unused"
DBStorage initEducations Throwable
dbsEducations DBStorage

dbsEducations.setDBAccess(getDBAccess
dbsEducations.setFromClause("V EDUCATIONS"
dbsEducations.setWritebackTable ("EDUCATIONS"
dbsEducations.open

dbsEducations

// Educations

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=6
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/28 18:11 6/6 Lifecycle Objekte erstellen

Die Initialisierung wird beim ersten Zugriff mit get(“educations”) automatisch durchgefthrt. Der Name
der Methode muss beachtet werden: “init” + “Educations” (richtet sich nach dem Objektnamen).

Der Nachteil dieser Methode ist, daR abgeleitete Klassen keinen Uberblick tiber die verwalteten
Objekte bekommen!

From:
https://doc.sibvisions.com/ - Documentation

Permanent link: (%]
https://doc.sibvisions.com/de/jvx/server/lco/objects

Last update: 2018/02/01 22:25

Documentation - https://doc.sibvisions.com/

https://doc.sibvisions.com/
https://doc.sibvisions.com/de/jvx/server/lco/objects

	Table of Contents
	[Konfiguration]
	[Konfiguration]
	[Konfiguration]
	Konfiguration
	Klassenhierarchie
	GenericBean

