
2026/01/28 18:11 1/1 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

Table of Contents

2026/01/28 18:11 1/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

Die Lifecycle Objekte von JVx sind einerseits Container für Objekte bzw. Methoden und andererseits
ermöglichen sie die Wiederverwendung von Funktionalitäten durch Vererbung. Als Lifecycle Objekt
kann auf Wunsch jedes POJO verwendet werden. Dadurch würde man aber auf den großen Vorteil der
Wiederverwendung verzichten.

Wir empfehlen eine spezielle Verwendung und eine vordefinierte Klassenhierarchie um alle Vorteile
ohne Einschränkungen zu nutzen!

Konfiguration

Im Idealfall wird je ein Lifecycle Objekt für die Applikation und für die MasterSession definiert.

Die Definition wird in der Applikationskonfiguration durchgeführt:

<application>
 ...
 ...

 <!-- predefined life-cycle object names -->
 <lifecycle>
 <application>com.sibvisions.apps.showcase.Application</application>
 <mastersession>com.sibvisions.apps.showcase.Session</mastersession>
 </lifecycle>

</application>

Die Klassenbezeichnung für die MasterSession kann auch beim Erstellen der MasterConnection durch
setLifeCycleName definiert werden.

Jede MasterConnection (Client) benötigt eine MasterSession (Server) um auf den Server zugreifen zu
können.

Das Lifecycle Objekt für die Applikation ist optional und wird nur für Applikationsübergreifende
Aufgaben benötigt.

Klassenhierarchie

Wir erklären die Klassenhierarchie anhand der Showcase Applikation.

Das Applikations Lifecycle Objekt:

Application.java

package com.sibvisions.apps.showcase;

...
...

/**
 * Application object for Showcase application.

https://doc.sibvisions.com/de/jvx/server/lco/lifecycle
https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=1

2026/01/28 18:11 2/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

 */
public class Application extends GenericBean
{
} // Application

Die Klasse GenericBean übernimmt die Objektverwaltung. Aus diesem Grund leiten wir davon ab.

Das MasterSession Lifecycle Objekt:

Session.java

package com.sibvisions.apps.showcase;

...
...

/**
 * Session object for Showcase application.
 */
public class Session extends Application
{
 //~~
 // User-defined methods
 //~~

 /**
 * Returns access to the database.
 *
 * @return the access to the database
 * @throws Exception if the datasource can not be opened
 */
 public DBAccess getDBAccess() throws Exception
 {
 DBAccess dba = (DBAccess)get("dBAccess");

 if (dba == null)
 {
 IConfiguration cfgSession =
SessionContext.getCurrentSessionConfig();

 dba = new HSQLDBAccess();

 //read the configuration from the config file
 dba.setConnection(cfgSession.getProperty(
"/application/securitymanager/database/url"));
 dba.setUser(cfgSession.getProperty(
"/application/securitymanager/database/username"));
 dba.setPassword(cfgSession.getProperty(
"/application/securitymanager/database/password"));
 dba.open();

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/28 18:11 3/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

 put("dBAccess", dba);
 }

 return dba;
 }

 /**
 * Gets the source code access object.
 *
 * @return the source access object
 */
 public SourceCode getSourceCode()
 {
 SourceCode sc = (SourceCode)get("sourceCode");

 if (sc == null)
 {
 sc = new SourceCode();

 put("sourceCode", sc);
 }

 return sc;
 }

} // Session

Wir leiten von Application ab um vollen Zugriff auf alle Methoden und Objekte des Vorgängers zu
erhalten. Durch die generelle Ableitung von GenericBean wird die Verfügbarkeit der Objekte
gewährleistet.

Jede SubConnection (Client), sprich jeder WorkScreen erhält ein eigenes Lifecycle Objekt:

Educations.java

package com.sibvisions.apps.showcase.frames;

...
...

/**
 * The <code>Educations</code> class is the life-cycle object for
<code>EducationsFrame</code>.
 */
public class Educations extends Session
{
 //~~
 // User-defined methods
 //~~

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=3

2026/01/28 18:11 4/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

 /**
 * Returns the educations storage.
 *
 * @return the Educations storage
 * @throws Exception if the initialization throws an error
 */
 public DBStorage getEducations() throws Exception
 {
 DBStorage dbsEducations = (DBStorage)get("educations");

 if (dbsEducations == null)
 {
 dbsEducations = new DBStorage();
 dbsEducations.setDBAccess(getDBAccess());
 dbsEducations.setFromClause("V_EDUCATIONS");
 dbsEducations.setWritebackTable("EDUCATIONS");
 dbsEducations.open();

 put("educations", dbsEducations);
 }

 return dbsEducations;
 }

} // Educations

Das Lifecycle Objekt wird abgeleitet von Session um auch hier den vollen Zugriff auf alle Methoden
und Objekte der Vorgänger zu erhalten.

Anhand des Aufrufs von getDBAccess sehen wir bereits den Vorteil dieser Technik. Wir öffnen die
Datenbankverbindung an zentraler Stelle und alle Ableitungen haben Zugriff auf die Verbindung.

Durch dieses Vorgehen werden Änderungen an zentraler Stelle durchgeführt, wir sparen Zeit und
lösen Abhängigkeiten auf.

GenericBean

Anhand des vorherigen Beispiels ist zwar gut zu erkennen, das aufgrund der Ableitungen auch alle
Methoden vererbt werden, doch üblicherweise würde doch jede Instanz ihre eigenen Objekte
verwalten. Wir würden also erwarten, daß jede Instanz von Educations durch den Aufruf von
getDBAccess auch eine neue Datenbankverbindung herstellt!

Und genau darin liegt der Unterschied zwischen POJO und GenericBean.

Wenn von GenericBean abgeleitet wird, sorgt der Server dafür, daß Instanzen wiederverwendet
werden. In unserem konkreten Beispiel wird bei der Instanzierung von Educations die Session Instanz
als Parent gesetzt. Die Session Instanz selbst erhält als Parent die Application Instanz. Dadurch liefert
unser Aufruf von getDBAccess immer ein und dieselbe Datenbankverbindung.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/28 18:11 5/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

Eine weitere Besonderheit von GenericBean ist der Zugriff auf die verwalteten Objekte durch deren
Namen:

DBStorage dbsEducations = (DBStorage)get("educations");

Wir können also entweder getEducations() oder get(“educations”) aufrufen und bekommen in beiden
Fällen dieselbe Instanz geliefert. Damit dies funktioniert muss das gewünschte Objekt instanziert und
hinterlegt werden:

dbsEducations = new DBStorage();
dbsEducations.setDBAccess(getDBAccess());
dbsEducations.setFromClause("V_EDUCATIONS");
dbsEducations.setWritebackTable("EDUCATIONS");
dbsEducations.open();

put("educations", dbsEducations);

Ein eher ungewöhnlicher jedoch sparsamer Ansatz des GenericBean ist die Objektinitialisierung ohne
get Methoden. In diesem Fall wird nur per Name auf die Objekte zugegriffen.

Unsere Educations Lifecycle Objekt würde wie folgt implementiert werden:

Educations.java

public class Educations extends Session
{
 //~~
 // User-defined methods
 //~~

 /**
 * Initializes the educations storage.
 *
 * @return the educations storage
 * @throws Exception if the initialization throws an error
 */
 @SuppressWarnings("unused")
 private DBStorage initEducations() throws Throwable
 {
 dbsEducations = new DBStorage();
 dbsEducations.setDBAccess(getDBAccess());
 dbsEducations.setFromClause("V_EDUCATIONS");
 dbsEducations.setWritebackTable("EDUCATIONS");
 dbsEducations.open();

 return dbsEducations;
 }

} // Educations

https://doc.sibvisions.com/_export/code/de/jvx/server/lco/objects?codeblock=6
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/28 18:11 6/6 Lifecycle Objekte erstellen

Documentation - https://doc.sibvisions.com/

Die Initialisierung wird beim ersten Zugriff mit get(“educations”) automatisch durchgeführt. Der Name
der Methode muss beachtet werden: “init” + “Educations” (richtet sich nach dem Objektnamen).

Der Nachteil dieser Methode ist, daß abgeleitete Klassen keinen Überblick über die verwalteten
Objekte bekommen!

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/de/jvx/server/lco/objects

Last update: 2018/02/01 22:25

https://doc.sibvisions.com/
https://doc.sibvisions.com/de/jvx/server/lco/objects

	Table of Contents
	[Konfiguration]
	[Konfiguration]
	[Konfiguration]
	Konfiguration
	Klassenhierarchie
	GenericBean

