2026/01/16 07:28 1/1 Erste JVx Applikation (Schritt fir Schritt)

Table of Contents

Documentation - http://doc.sibvisions.com/

2026/01/16 07:28 1/16 Erste JVx Applikation (Schritt fir Schritt)

Das Ziel dieses Tutorials ist die Erstellung einer Applikation mit dem Enterprise Application
Framework. Dazu wird ein erster Einblick in die Méglichkeiten des Frameworks gegeben.

Die Aufgabe der Applikation ist, die Daten aus einer Datenbanktabelle darzustellen und editierbar zu
machen. Die Applikation erfordert eine Authentifizierung mit Benutzername und Passwort.

Wir setzen folgende Kenntnisse und Hilfsmittel voraus:

e JVx Binarpaket

e Eclipse IDE (>= 3.4) mit)DT (Empfohlen wird: Eclipse IDE fur Java EE Entwickler)
e JDK 8.0 (1.8) or héher

e HSQLDB Bibliothek (http://www.hsqldb.org)

e Datenbank- bzw. SQL Kenntnisse

Diese Dokumentation beschreibt folgende Bereiche:

e JVx Verzeichnisstruktur
e Eclipse Projektkonfiguration
¢ Applikationsentwicklung
o Client
o Server
e Erstellen eines WorkScreens
e Verwenden einer HSQL Datenbank

Verzeichnisstruktur

Fur die Applikationsentwicklung mit JVx wird eine spezielle Ordnerstruktur empfohlen. Diese
erleichtert den Build Prozess und trennt von vornherein Abhangigkeiten zwischen Client und Server.
Diese Struktur ist wie folgt zu erstellen:

(x]

Auf Wunsch kann auch eine herkdmmliche Strukturierung:

(]

verwendet werden. Die Dokumentation bezieht sich jedoch auf die empfohlene Struktur.

Ordner |Beschreibung
rad Enthalt Applikations- und Serverspezifische Dateien.
Enthalt alle verfugbaren Applikationen. In diesem konkreten Beispiel ist nur eine

apps Applikation enthaltene.

firstapp |CEnthalt die Applikation mit Projektkonfiguration, Sourcen, Bibliotheken.

help Enthalt den Client fir die Online Hilfe und die Hilfeseiten.

libs Enthalt alle Bibliotheken, die sowohl am Client als auch am Server benétigt werden.

libs/client |[Enthalt alle Bibliotheken die ausschlielSlich am Client bendtigt werden.
libs/server Enthalt alle Bibliotheken die ausschlieBlich am Server bendtigt werden.
src.client |Enthalt alle Sourcen die ausschlielSlich am Client bendtigt werden.
src.server |Enthalt alle Sourcen die ausschlieSlich am Server benétigt werden.
test Enthalt Unit tests fur Client und Server bzw. Bibliotheken.

Documentation - http://doc.sibvisions.com/

http://sourceforge.net/projects/jvx/files/latest/download
http://www.hsqldb.org

2026/01/16 07:28 2/16 Erste JVx Applikation (Schritt fir Schritt)

Nachdem die Ordnerstruktur erstellt wurde, kopieren Sie die Bibliothek jvxclient. jar in den
Ordner libs/client und die Bibliothek jvx. jar in den Ordner libs/server. Beide Bibliotheken
sind im JVx Binarpaket enthalten.

Projektkonfiguration

Nachdem die Konfiguration durchgefuhrt wurde, kann mit Eclipse ein neues Projekt erstellt werden:

* File / New / Java Project
e Zu beachten ist, dass das Projekt im Applikationsverzeichnis firstapp abgelegt wird.

=]

¢ Entfernen des src Ordner von den Source Folders
Setzen der Ordner src.client, src.server und test als Source Folder

[x]

e Hinzufugen der jvx. jar Bibliothek, aus dem Projektverzeichnis
JVxFirstApp/libs/server

 Das Projekt kann nun erstellt werden

Das Projekt wird von Eclipse nun wie folgt dargestellt:

(x]

Zur Vollstandigkeit kann der src Ordner gel6scht werden. Dieser wird in unserer Applikation nicht
bendtigt.

Applikationsentwicklung

Die Applikation bendtigt Serverseitig eine Konfigurationsdatei fur Einstellungen die nur die Applikation
betreffen. Fur die Konfiguration des Servers wird zusatzlich eine Konfigurationsdatei benotigt. Zuerst
erstellen wir die Datei fUr die Applikation:

 File / New / File - config.xml

(Erstellung direkt im Applikationsverzeichnis JVxFirstApp)

Die Datei wird wie folgt befullt:

config.xml

<?xml version="1.0" encoding="UTF-8"?7>

<application>
<securitymanager>
<class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
<userfile>users.xml</userfile>
</securitymanager>

<!-- predefined life-cycle object names -->
<lifecycle>

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=0

2026/01/16 07:28 3/16 Erste JVx Applikation (Schritt fir Schritt)

<mastersession>apps.firstapp.Session</mastersession>

<application>apps.firstapp.Application</application>
</lifecycle>
</application>

Parameter Beschreibung

Der Sicherheitsmanager fiir die Uberpriifung von Benutzernamen/Passwort

securitymanager/class bei der Anmeldung an die Applikation.

securitymanager/usersfile| Die Datei mit den erlaubten Benutzername/Passwort Kombinationen.

Die Klassenbezeichnung des Server Objektes, das instanziert wird, wenn
lifecycle/mastersession |der Client eine Anmeldung durchfuhrt bzw. eine neue MasterSession
startet.

Die Klassenbezeichnung des Server Objektes das instanziert wird beim
lifecycle/application ersten Zugriff auf die Applikation. Fur alle weiteren Zugriffe wird dieses
Objekt wiederverwendet.

Die Konfigurationsdatei des Servers muss im Verzeichnis . ./JVxFirstApp/rad/server abgelegt
werden.

Dieses Verzeichnis scheint in unserem Eclipse Projekt jedoch nicht auf, da es sich auf einer héheren
Verzeichnisebene befindet. Die Konfigurationsdatei konnte direkt im Dateisystem erstellt werden oder
wir erstellen einen Verzeichnis-Link in unserem Projekt:

¢ File / New / Folder
[x]

Anschliefend kann die Konfigurationsdatei erstellt werden:

* File / New / File - config.xml

(=]

Die Datei wird wie folgt befullt:

config.xml

<?xml version="1.0" encoding="UTF-8"7>

<server>
</server>

Der Server benotigt flr unsere Applikation keine speziellen Parameter.

Far den Client benétigen wir nun eine Klasse die vom Typ jvx.rad.application.IApplication
ist. Von JVx wird eine Standard Implementierung durch
com.sibvisions.rad.application.Application implementiert. Von dieser werden wir
unseren Client ableiten und erstellen somit eine Klasse, im Verzeichnis src.client, mit folgendem
Source Code:

FirstApplication.java

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=1
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=2

2026/01/16 07:28

4/16 Erste JVx Applikation (Schritt fir Schritt)

package apps.firstapp;

import jvx
import jvx

import com
import com

/**

.rad.application.genui.UILauncher;
.rad.remote.IConnection;

.Sibvisions.rad.application.Application;
.Sibvisions.rad.server.DirectServerConnection;

* First application with JVx, Enterprise Application Framework.

*

* @author
)/

René Jahn

public class FirstApplication extends Application

{

//~~

// Initialization

//~~

/**

* Creates a new instance of <code>FirstApplication</code> with a

technology

* dependent launcher.

*

* @param pLauncher the technology dependent launcher
* @throws Exception if initialization fails

*/

public FirstApplication(UILauncher pLauncher) throws Exception

{

super (pLauncher) ;

}

//~~

// Overwritten methods

//~~

/**

* {@inheritDoc}

*/

@Override
protected IConnection createConnection() throws Exception

{

return

}

Vet

new DirectServerConnection();

* {@inheritDoc}

*/

@Override
protected String getApplicationName()

{

Documentation - http://doc.

sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/16 07:28 5/16 Erste JVx Applikation (Schritt fir Schritt)

"firstapp"

// FirstApplication

Methode Beschreibung
Der Standardkonstruktor kann nicht verwendet werden, da jede Applikation mit
Konstruktor einem Technologieabhangigen Launcher gestartet wird. Dieser Launcher wird

bereits im Konstruktor an die Applikation ubergeben.

Das Kommunikationsprotokoll wird initialisiert. Fir unsere Applikation ist eine
DirectServerConnection ausreichend, da sowohl Client als auch Server in
der selben VM gestartet werden. Wird jedoch ein Applikationsserver eingesetzt
kdnnte alternativ eine HttpConnection verwendet werden.

Legt den Applikationsnamen fest. Dieser Name wird fur die Kommunikation mit
dem Server benotigt, da dieser abhangig vom Applikationsnamen die passende
Applikationskonfiguration verwendet. In unserem Fall muss der
Applikationsname firstapp lauten, da das Arbeitsverzeichnis
../JVxFirstApp/rad/firstapp/ ebenso lautet. Der Applikationsname
MUSS immer dem Verzeichnisnamen entsprechen!

createConnection

getApplicationName

Nun ist es an der Zeit fur den ersten Start der Applikation. Dafur erstellen wir eine Runtime
Konfiguration:

¢ Run / Run Configurations... / Application - New launch configuration - mit den
Einstellungen:

B

Parameter Beschreibung

Hier wird der Technologie Abhangige Launcher festgelegt. Wir verwenden flr

Main class unsere Applikation die Technologie Swing und starten eine Swing Applikation.
Proaram Dem Launcher muss mitgeteilt werden, welche Applikation gestartet wird. Fur
argaments unsere Swing Applikation konnen wir daflr den Mechanismus der Programm

Argumente nutzen und Ubergeben den Klassennamen unserer Applikation.

Die Applikation kann nun gestartet werden und sollte wie folgt aussehen:

=]

Der erste Anmeldeversuch scheitert mit dem Hinweis:
Userfile 'users.xml' does not exist!

Diese Datei wurde im config.xml der Applikation definiert, bisher jedoch noch nicht erstellt. Das
holen wir an dieser Stelle nach:

¢ File / New / File - users.xml

=]

Die Datei beflllen wir mit:

users.xml

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=4

2026/01/16 07:28 6/16

Erste JVx Applikation (Schritt fir Schritt)

<?xml version="1.0" encoding="UTF-8"7>
<users>

<user name="admin" password="admin"/>
</users>

Es konnen beliebig viele user Zeilen eingetragen werden!

Nun ist die Anmeldung an die Applikation ohne Probleme madglich. Zur Erfullung unserer
Aufgabenstellung fehlt jedoch noch die Moglichkeit eine Datenbanktabelle anzuzeigen bzw. zu

editieren. Diesem Teil der Aufgabe widmen wir uns jetzt.

Erstellen eines WorkScreens

Bevor wir den WorkScreen erstellen, bereiten wir die Applikation fur die Anzeige des WorkScreens vor.

Dazu erweitern wir unsere FirstApplication Klasse wie folgt:

FirstApplication.java

apps.firstapp

jvx.rad.application.genui.UILauncher
jvx.rad.genui.UIImage
jvx.rad.genui.component.UIButton
jvx.rad.genui.container.UIToolBar
jvx.rad.genui.menu.UIMenu
jvx.rad.genui.menu.UIMenultem
jvx.rad.remote.IConnection

com.sibvisions.rad.application.Application

com.sibvisions.rad.server.DirectServerConnection

/**

* First application with JVx, Enterprise Application Framework.

*
* @author René Jahn

*/
FirstApplication Application
e e e et s
// Initialization
[[~ e
/X¥*

* Creates a new instance of <code>FirstApplication</code> with a

technology

* dependent launcher.
*

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=5

2026/01/16 07:28 7/16 Erste JVx Applikation (Schritt fir Schritt)

* @param pLauncher the technology dependent launcher
*/
FirstApplication(UILauncher pLauncher

pLauncher

/**
* {@inheritDoc}
*/
@Override
IConnection createConnection Exception

DirectServerConnection

/**
* {@inheritDoc}
*/
@Override
String getApplicationName

"firstapp"
/X%
* {@inheritDoc}
*/
@Override
void afterLogin
.afterLogin

//configure MenuBar

UIMenu menuMasterData UIMenu
menuMasterData.setText("Master data"

UIMenuItem miDBEdit createMenulItem
"doOpenDBEdit", null, "DB Edit",
UIImage.getImage (UIImage.SEARCH LARGE
menuMasterData.add (miDBEdit

//insert before Help
getMenuBar () .add(menuMasterData, 1

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/16 07:28 8/16 Erste JVx Applikation (Schritt fir Schritt)

//configure ToolBar
UIToolBar tbMasterData UIToolBar
UIButton butDBEdit createToolBarButton
"doOpenDBEdit", null, "DB Edit",
UIImage.getImage(UIImage.SEARCH LARGE
tbMasterData.add (butDBEdit

getLauncher().addToolBar(tbMasterData

/**
* Opens the edit screen.

*/
void doOpenDBEdit

//TODO open the workscreen

// FirstApplication

Methode Beschreibung

Diese Methode wird von der Superklasse aufgerufen nachdem eine erfolgreiche
Anmeldung durchgefuhrt wurde. Wir verwenden diese Methode um unser Menu
und unsere ToolBar zu erweitern.

afterLogin
Es ist nicht nétig nach der Abmeldung die Anderungen riickgéngig zu machen,
da dies von der Superklasse Ubernommen wird.

doOpenDBEit Diese Methode wird aufgefufen wenn das Menu oder der ToolBar Button

gedruckt werden.

Wird von der Superklasse bereitgestellt um Menu Eintrage zu erstellen. Der
erste Parameter enthalt die Bezeichnung der Methode die aufgerufen werden
soll wenn der Menu Eintrag gedruckt wird. Der zweite Parameter enthalt den
Befehl (ActionCommand) der in unserem Fall keine Rolle spielt. Im dritten
Parameter ist der Text des Menu Eintrags zu definieren und abschlieBend wird
das Bild fur den Eintrag Ubergeben.

createMenultem

Ahnlich wie createMenuItem nur wird hierbei ein Button erzeugt, der sich dem

createToolBarBUton| oot ger ToolBar anpasst.

Liefert ein vordefiniertes Bild aus der Bild Bibliothek von JVx

Ulimage.getimage Wir verwenden zwecks Komfort ein vordefiniertes Bild.

Wir erstellen nun die Client Klasse flr unseren WorkScreen:

* File / New / Class
src.client, apps.firstapp.frames.DBEditFrame

Documentation - http://doc.sibvisions.com/

2026/01/16 07:28 9/16 Erste JVx Applikation (Schritt fir Schritt)

(]

und verwenden folgenden Source Code:

DBEditFrame.java

package apps.firstapp.frames;

import jvx.rad.genui.container.UIGroupPanel;
import jvx.rad.genui.container.UIInternalFrame;
import jvx.rad.genui.control.UITable;

import jvx.rad.genui.layout.UIBorderLayout;
import jvx.rad.remote.AbstractConnection;
import jvx.rad.remote.MasterConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.model.remote.RemoteDataBook;
import com.sibvisions.rad.model.remote.RemoteDataSource;

/**

* A simple database table editor.
*k

* @author René Jahn
*/
public class DBEditFrame extends UIInternalFrame
{
= ——

// Class members
//~~ ==

/** the application. */
private Application application;

/** the communication connection to the server. */
private AbstractConnection connection;

/** the DataSource for fetching table data. */

private RemoteDataSource dataSource = new RemoteDataSource!() ;

/** the contacts tabl. */

private RemoteDataBook rdbContacts = new RemoteDataBook!() ;

//~~ ==
// Initialization

//~~ -

/**

@param pApp the application
@throws Throwable if the remote access fails

* %X X ¥

Creates a new instance of DBEditFrame for a specific application.

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=6

2026/01/16 07:28 10/16 Erste JVx Applikation (Schritt fir Schritt)

*/

DBEditFrame(Application pApp Throwable
pApp.getDesktopPane
application = pApp

initializeModel
initializeUI

/**
* Tnitializes the model.
*

* @throws Throwable if the initialization throws an error
*/
void initializeModel Throwable

//we use a new "session" for the screen

connection MasterConnection)application.getConnection
createSubConnection("apps.firstapp.frames.DBEdit"
connection.open

//data connection
dataSource.setConnection(connection
dataSource.open

//table
rdbContacts.setDataSource(dataSource
rdbContacts.setName("contacts"
rdbContacts.open

/**

* Initializes the UI.
*

* @throws Exception if the initialization throws an error
*/
void initializeUI Exception

UIGroupPanel group UIGroupPanel
group.setText("Available Contacts"

UITable table UITable
table.setDataBook(rdbContacts

group.setlLayout UIBorderLayout
group.add(table

//same behaviour as centered component in BorderLayout
setlLayout UIBorderLayout

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/16 07:28 11/16 Erste JVx Applikation (Schritt fir Schritt)

add (group

setTitle("Contacts”

setSize UIDimension (400, 500
e e
// Overwritten methods
/[e e
/**

* Closes the communication connection and disposes the frame.

*/
@Override

void dispose

connection.close

Throwable th

//nothing to be done

.dispose

// DBEditFrame

Methode Beschreibung
initializeModel Instanziert die Objekte fur den Zugriff auf den Server bzw. die Daten.
InitializeUl Layouting des WorkScreen.

Beendet die Verbindung zum Server flr den WorkScreen und schliel§t den
Frame. Die Verbindung musste nicht explizit geschlossen werden, da dies beim
Verwerfen durch den GarbageCollector vollautomatisch passiert. In unserer
ersten Applikation ist das aber auch kein Nachteil.

dispose

Wir erstellen eine eigene Verbindung zum Server. Das hat den Vorteil, dass am
Server ein eigenes Lifecycle Objekt verwendet wird. Dieses Objekt halt alle
Objekte, die vom WorkScreen bendétigt werden. Nachdem der WorkScreen
geschlossen wird, wird auch der benutzte Speicher wieder freigeben. Weiters
createSubConnection|kann jede Verbindung spezielle Parameter und Timeouts haben. Das
gewunschte Lifecycle Objekt wird mit der Klassenbezeichnung definitert:
apps.firstapp.frames.DBEdit.

Die Klasse erstellen wir im AnschlulS.

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/16 07:28 12/16 Erste JVx Applikation (Schritt fir Schritt)

Member |Beschreibung
Die Verbindung zum Server, speziell fur den WorkScreen. Im Hintergrund wird ein
connection |spezielles Kommunikationsprotokoll verwendet. In unserem Fall spiegelt dieses die
Klasse DirectServerConnection wieder.
Die DataSource ist unabhangig vom Kommunikationsprotokoll und kimmert sich um die
dataSource |Ubertragung der Daten zwischen Client und Server. Fur den Transfer wird die
connection verwendet.
Das Model und der Controller fur die Datenanzeige.
rdbContacts|Der Name contacts legt fest unter welchen Namen das serverseitige Objekt im
Lifecycle Objekt zu finden ist.
table Die View fur die Datenanzeige.

Der WorkScreen ist nun fertig und kann in die Applikation integriert werden. Wir implementieren nun
den fehlenden Aufruf:

FirstApplication.java

FirstApplication Application

/¥

* Opens the edit screen.

* @throws Throwable if the edit frame can not be opened
*/

void doOpenDBEdit Throwable
DBEditFrame frame DBEditFrame
configureFrame(frame

frame.setVisible(true

// FirstApplication

Methode

Beschreibung

Die Methode kann ohne Probleme Throwable werfen. Samtliche Applikationsfehler

doOpenDBEdit |werden vom Applikationsrahmen abgefangen und in einem Informationsdialog

angezeigt.

configureFrame

Diese Methode wird von der Superklasse bereitgestellt und sorgt dafir, dass alle
Frames einheitlich aussehen. Dazu zahlt unter anderem das Mena Icon.

Die Client Implementierung ist nun abgeschlossen. Bevor wir die Applikation verwenden kénnen
mussen die fehlenden Server Klassen erstellt werden. Wir erstellen folgende Klassen:

¢ File / New / Class

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=7
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/16 07:28 13/16 Erste JVx Applikation (Schritt fir Schritt)

src.server, apps.firstapp.Application

]

Application.java
package apps.firstapp

import com.sibvisions.rad.server.GenericBean

/**

* The LCO for the application.
*

* @author René Jahn
*/
public class Application extends GenericBean

// Application

Beschreibung

Die Klasse spiegelt das Lifecycle Objekt flr eine Applikation wieder. Pro Applikation existiert genau
eine Instanz dieser Klasse. Es kdnnen somit Session Ubergreifende Objekte verwendet werden.

* File / New / Class
src.server, apps.firstapp.Session

=]

Session.java

package apps.firstapp

import com.sibvisions.rad.persist.jdbc.DBAccess
import com.sibvisions.rad.persist.jdbc.IDBAccess

/**

* The LCO for the session.
*

* @author René Jahn
*/
public class Session extends Application

[~ -~

// User-defined methods

e

/X%
Returns access to the database.

b 3

b 3

* @return the database access

* @throws Exception if a connection error occurs

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=8
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=9

2026/01/16 07:28 14/16 Erste JVx Applikation (Schritt fir Schritt)

*/
IDBAccess getDBAccess Exception

DBAccess dba DBAccess)get ("dBAccess"
dba null
dba HSQLDBAccess
dba.setUrl("jdbc:hsgldb:hsql://localhost/firstappdb"
dba.setUsername("sa"
dba.setPassword(""

dba.open

put ("dBAccess", dba

dba

// Session

Beschreibung

Die Klasse spiegelt das Lifecycle Objekt flr eine Session wieder. Eine Session beginnt in unserem Fall
mit der Anmeldung an die Applikation und endet mit der Abmeldung. Pro Session existiert genau eine
Instanz dieses Objektes. Es konnen somit Objekte fur die Dauer der Anmeldung verwendet werden.

Durch die Ableitung von apps.firstapp.Application ist es auf einfachste Art und Weise
moglich, auch die Applikationsobjekte zu verwenden.

Methode |Beschreibung

Offnet eine neue Verbindung zu einer HSQL Datenbank, falls dies nicht bereits

getDBAccess geschehen ist.

Das Exception Handling wird vom Server Gbernommen.

* File / New / Class
src.server, apps.firstapp.frames.DBEdit

(]
DBEdit.java
apps.firstapp.frames
jvx.rad.persist.IStorage
com.sibvisions.rad.persist.jdbc.DBStorage
apps.firstapp.Session
/*%

* The LCO for the DBEdit WorkScreen.

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=10

2026/01/16 07:28 15/16 Erste JVx Applikation (Schritt fir Schritt)

*

* @author René Jahn

w5/
DBEdit Session
[/] e
// User-defined methods
[e
/**

* Returns the contacts storage.
*

* @return the contacts storage
* @throws Exception if the initialization throws an error

*/
IStorage getContacts Exception
DBStorage dbsContacts DBStorage)get("contacts"
dbsContacts null
dbsContacts DBStorage
dbsContacts.setDBAccess (getDBAccess
dbsContacts.setFromClause("CONTACTS"
dbsContacts.setWritebackTable("CONTACTS"

dbsContacts.open

put("contacts", dbsContacts

dbsContacts

// DBEdit

Beschreibung

Die Klasse spiegelt das Lifecycle Objekt fur den DBEditFrame WorkScreen wieder. Auf die Objekte
kann ausschliel8lich Gber die SubConnection des WorkScreens zugegriffen werden.

Durch die Ableitung von apps.firstapp.Session kann auf einfachste Art und Weise auf samtliche
Objekte der Session und der Application zugegriffen werden.

Methode |Beschreibung

Ermdglicht den Zugriff auf die Datenbanktabelle CONTACTS. Der Methodenname muss

dem Objektnamen des RemoteDataBook entsprechen: contacts = getContacts.
getContacts

Das Exception Handling wird vom Server ibernommen.

Die Applikation ist jetzt vollstandig implementiert und lauffahig. Damit wir nun mit der Applikation
arbeiten kdnnen benétigen wir die Datenbank inklusive Tabelle CONTACTS auf die wir zugreifen
wollen. Die Konfiguration von HSQLDB wird in diesem Dokument nicht detailiert beschrieben, da die

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/16 07:28 16/16 Erste JVx Applikation (Schritt fir Schritt)

Beispiele auf der Projektseite detailiert und ausreichend sind. In nachfolgendem Kapitel finden Sie
eine kurze Zusammenfassung der notwendigen Schritte.

Datenbank erstellen

Folgende Schritte sollten durchgefihrt werden um eine HSQLDB zu erstellen und zu starten.

e Kopieren Sie den HSQLDB JDBC-Teiber (hsqldb. jar) in das Verzeichnis
../JIVxFirstApp/libs/server/

* Fugen Sie den JDBC-Treiber dem CLASSPATH des JVxFirstApp Projektes hinzu

e Erstellen Sie eine Datenbank mit dem Alias firstappdb und folgender Tabelle:

CONTACTS

ID
FIRSTNAME
LASTNAME
BIRTHDAY
STREET

NR

ZIP

TOWN

e SStarten Sie die Datenbank z.B.:

java -cp ../libs/server/hsqldb.jar org.hsgldb.Server -database.0
file:firstappdb -dbname.0® firstappdb

Die erste Applikation

Nachdem die Datenbank gestartet wurde kann die Applikation ebenfalls gestartet werden. Die fertige
Applikation sollte nun wie folgt aussehen:

(]

Den Source Code und das Eclipse Projekt finden Sie auch im Download Bereich.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: [x]
http://doc.sibvisions.com/de/jvx/firstapp_step-by-step

Last update: 2024/11/18 10:22

Documentation - http://doc.sibvisions.com/

http://doc.sibvisions.com/de/jvx/example_applications
http://doc.sibvisions.com/
http://doc.sibvisions.com/de/jvx/firstapp_step-by-step

	Table of Contents
	[Verzeichnisstruktur]
	[Verzeichnisstruktur]
	[Verzeichnisstruktur]
	Verzeichnisstruktur
	Projektkonfiguration
	Applikationsentwicklung
	Erstellen eines WorkScreens
	Datenbank erstellen
	Die erste Applikation

