
2026/01/16 07:28 1/1 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

Table of Contents

2026/01/16 07:28 1/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

Das Ziel dieses Tutorials ist die Erstellung einer Applikation mit dem Enterprise Application
Framework. Dazu wird ein erster Einblick in die Möglichkeiten des Frameworks gegeben.

Die Aufgabe der Applikation ist, die Daten aus einer Datenbanktabelle darzustellen und editierbar zu
machen. Die Applikation erfordert eine Authentifizierung mit Benutzername und Passwort.

Wir setzen folgende Kenntnisse und Hilfsmittel voraus:

JVx Binärpaket
Eclipse IDE (>= 3.4) mit JDT (Empfohlen wird: Eclipse IDE für Java EE Entwickler)
JDK 8.0 (1.8) or höher
HSQLDB Bibliothek (http://www.hsqldb.org)
Datenbank- bzw. SQL Kenntnisse

Diese Dokumentation beschreibt folgende Bereiche:

JVx Verzeichnisstruktur
Eclipse Projektkonfiguration
Applikationsentwicklung

Client
Server

Erstellen eines WorkScreens
Verwenden einer HSQL Datenbank

Verzeichnisstruktur

Für die Applikationsentwicklung mit JVx wird eine spezielle Ordnerstruktur empfohlen. Diese
erleichtert den Build Prozess und trennt von vornherein Abhängigkeiten zwischen Client und Server.
Diese Struktur ist wie folgt zu erstellen:

Auf Wunsch kann auch eine herkömmliche Strukturierung:

verwendet werden. Die Dokumentation bezieht sich jedoch auf die empfohlene Struktur.

Ordner Beschreibung
rad Enthält Applikations- und Serverspezifische Dateien.

apps Enthält alle verfügbaren Applikationen. In diesem konkreten Beispiel ist nur eine
Applikation enthaltene.

firstapp CEnthält die Applikation mit Projektkonfiguration, Sourcen, Bibliotheken.
help Enthält den Client für die Online Hilfe und die Hilfeseiten.
libs Enthält alle Bibliotheken, die sowohl am Client als auch am Server benötigt werden.
libs/client Enthält alle Bibliotheken die ausschließlich am Client benötigt werden.
libs/server Enthält alle Bibliotheken die ausschließlich am Server benötigt werden.
src.client Enthält alle Sourcen die ausschließlich am Client benötigt werden.
src.server Enthält alle Sourcen die ausschließlich am Server benötigt werden.
test Enthält Unit tests für Client und Server bzw. Bibliotheken.

http://sourceforge.net/projects/jvx/files/latest/download
http://www.hsqldb.org

2026/01/16 07:28 2/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

Nachdem die Ordnerstruktur erstellt wurde, kopieren Sie die Bibliothek jvxclient.jar in den
Ordner libs/client und die Bibliothek jvx.jar in den Ordner libs/server. Beide Bibliotheken
sind im JVx Binärpaket enthalten.

Projektkonfiguration

Nachdem die Konfiguration durchgeführt wurde, kann mit Eclipse ein neues Projekt erstellt werden:

File / New / Java Project
Zu beachten ist, dass das Projekt im Applikationsverzeichnis firstapp abgelegt wird.

Entfernen des src Ordner von den Source Folders
Setzen der Ordner src.client, src.server und test als Source Folder

Hinzufügen der jvx.jar Bibliothek, aus dem Projektverzeichnis
JVxFirstApp/libs/server

Das Projekt kann nun erstellt werden

Das Projekt wird von Eclipse nun wie folgt dargestellt:

Zur Vollständigkeit kann der src Ordner gelöscht werden. Dieser wird in unserer Applikation nicht
benötigt.

Applikationsentwicklung

Die Applikation benötigt Serverseitig eine Konfigurationsdatei für Einstellungen die nur die Applikation
betreffen. Für die Konfiguration des Servers wird zusätzlich eine Konfigurationsdatei benötigt. Zuerst
erstellen wir die Datei für die Applikation:

File / New / File - config.xml
(Erstellung direkt im Applikationsverzeichnis JVxFirstApp)

Die Datei wird wie folgt befüllt:

config.xml

<?xml version="1.0" encoding="UTF-8"?>

<application>
 <securitymanager>
<class>com.sibvisions.rad.server.security.XmlSecurityManager</class>
 <userfile>users.xml</userfile>
 </securitymanager>

 <!-- predefined life-cycle object names -->
 <lifecycle>

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=0

2026/01/16 07:28 3/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 <mastersession>apps.firstapp.Session</mastersession>
 <application>apps.firstapp.Application</application>
 </lifecycle>
</application>

Parameter Beschreibung

securitymanager/class Der Sicherheitsmanager für die Überprüfung von Benutzernamen/Passwort
bei der Anmeldung an die Applikation.

securitymanager/usersfile Die Datei mit den erlaubten Benutzername/Passwort Kombinationen.

lifecycle/mastersession
Die Klassenbezeichnung des Server Objektes, das instanziert wird, wenn
der Client eine Anmeldung durchführt bzw. eine neue MasterSession
startet.

lifecycle/application
Die Klassenbezeichnung des Server Objektes das instanziert wird beim
ersten Zugriff auf die Applikation. Für alle weiteren Zugriffe wird dieses
Objekt wiederverwendet.

Die Konfigurationsdatei des Servers muss im Verzeichnis ../JVxFirstApp/rad/server abgelegt
werden.

Dieses Verzeichnis scheint in unserem Eclipse Projekt jedoch nicht auf, da es sich auf einer höheren
Verzeichnisebene befindet. Die Konfigurationsdatei könnte direkt im Dateisystem erstellt werden oder
wir erstellen einen Verzeichnis-Link in unserem Projekt:

File / New / Folder

Anschließend kann die Konfigurationsdatei erstellt werden:

File / New / File - config.xml

Die Datei wird wie folgt befüllt:

config.xml

<?xml version="1.0" encoding="UTF-8"?>

<server>
</server>

Der Server benötigt für unsere Applikation keine speziellen Parameter.

Für den Client benötigen wir nun eine Klasse die vom Typ jvx.rad.application.IApplication
ist. Von JVx wird eine Standard Implementierung durch
com.sibvisions.rad.application.Application implementiert. Von dieser werden wir
unseren Client ableiten und erstellen somit eine Klasse, im Verzeichnis src.client, mit folgendem
Source Code:

FirstApplication.java

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=1
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=2

2026/01/16 07:28 4/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

package apps.firstapp;

import jvx.rad.application.genui.UILauncher;
import jvx.rad.remote.IConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.server.DirectServerConnection;

/**
 * First application with JVx, Enterprise Application Framework.
 *
 * @author René Jahn
 */
public class FirstApplication extends Application
{
 //~~
 // Initialization
 //~~

 /**
 * Creates a new instance of <code>FirstApplication</code> with a
technology
 * dependent launcher.
 *
 * @param pLauncher the technology dependent launcher
 * @throws Exception if initialization fails
 */
 public FirstApplication(UILauncher pLauncher) throws Exception
 {
 super(pLauncher);
 }

 //~~
 // Overwritten methods
 //~~

 /**
 * {@inheritDoc}
 */
 @Override
 protected IConnection createConnection() throws Exception
 {
 return new DirectServerConnection();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected String getApplicationName()
 {

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/16 07:28 5/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 return "firstapp";
 }

} // FirstApplication

Methode Beschreibung

Konstruktor
Der Standardkonstruktor kann nicht verwendet werden, da jede Applikation mit
einem Technologieabhängigen Launcher gestartet wird. Dieser Launcher wird
bereits im Konstruktor an die Applikation übergeben.

createConnection
Das Kommunikationsprotokoll wird initialisiert. Für unsere Applikation ist eine
DirectServerConnection ausreichend, da sowohl Client als auch Server in
der selben VM gestartet werden. Wird jedoch ein Applikationsserver eingesetzt
könnte alternativ eine HttpConnection verwendet werden.

getApplicationName

Legt den Applikationsnamen fest. Dieser Name wird für die Kommunikation mit
dem Server benötigt, da dieser abhängig vom Applikationsnamen die passende
Applikationskonfiguration verwendet. In unserem Fall muss der
Applikationsname firstapp lauten, da das Arbeitsverzeichnis
../JVxFirstApp/rad/firstapp/ ebenso lautet. Der Applikationsname
MUSS immer dem Verzeichnisnamen entsprechen!

Nun ist es an der Zeit für den ersten Start der Applikation. Dafür erstellen wir eine Runtime
Konfiguration:

Run / Run Configurations… / Application - New launch configuration - mit den
Einstellungen:

Parameter Beschreibung

Main class Hier wird der Technologie Abhängige Launcher festgelegt. Wir verwenden für
unsere Applikation die Technologie Swing und starten eine Swing Applikation.

Program
arguments

Dem Launcher muss mitgeteilt werden, welche Applikation gestartet wird. Für
unsere Swing Applikation können wir dafür den Mechanismus der Programm
Argumente nutzen und übergeben den Klassennamen unserer Applikation.

Die Applikation kann nun gestartet werden und sollte wie folgt aussehen:

Der erste Anmeldeversuch scheitert mit dem Hinweis:

Userfile 'users.xml' does not exist!

Diese Datei wurde im config.xml der Applikation definiert, bisher jedoch noch nicht erstellt. Das
holen wir an dieser Stelle nach:

File / New / File - users.xml

Die Datei befüllen wir mit:

users.xml

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=4

2026/01/16 07:28 6/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

<?xml version="1.0" encoding="UTF-8"?>

<users>
 <user name="admin" password="admin"/>
</users>

Es können beliebig viele user Zeilen eingetragen werden!

Nun ist die Anmeldung an die Applikation ohne Probleme möglich. Zur Erfüllung unserer
Aufgabenstellung fehlt jedoch noch die Möglichkeit eine Datenbanktabelle anzuzeigen bzw. zu
editieren. Diesem Teil der Aufgabe widmen wir uns jetzt.

Erstellen eines WorkScreens

Bevor wir den WorkScreen erstellen, bereiten wir die Applikation für die Anzeige des WorkScreens vor.
Dazu erweitern wir unsere FirstApplication Klasse wie folgt:

FirstApplication.java

package apps.firstapp;

import jvx.rad.application.genui.UILauncher;
import jvx.rad.genui.UIImage;
import jvx.rad.genui.component.UIButton;
import jvx.rad.genui.container.UIToolBar;
import jvx.rad.genui.menu.UIMenu;
import jvx.rad.genui.menu.UIMenuItem;
import jvx.rad.remote.IConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.server.DirectServerConnection;

/**
 * First application with JVx, Enterprise Application Framework.
 *
 * @author René Jahn
 */
public class FirstApplication extends Application
{
 //~~
 // Initialization
 //~~

 /**
 * Creates a new instance of <code>FirstApplication</code> with a
technology
 * dependent launcher.
 *

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=5

2026/01/16 07:28 7/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 * @param pLauncher the technology dependent launcher
 */
 public FirstApplication(UILauncher pLauncher)
 {
 super(pLauncher);
 }

 //~~
 // Overwritten methods
 //~~

 /**
 * {@inheritDoc}
 */
 @Override
 protected IConnection createConnection() throws Exception
 {
 return new DirectServerConnection();
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected String getApplicationName()
 {
 return "firstapp";
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected void afterLogin()
 {
 super.afterLogin();

 //configure MenuBar

 UIMenu menuMasterData = new UIMenu();
 menuMasterData.setText("Master data");

 UIMenuItem miDBEdit = createMenuItem
 ("doOpenDBEdit", null, "DB Edit",
 UIImage.getImage(UIImage.SEARCH_LARGE));

 menuMasterData.add(miDBEdit);

 //insert before Help
 getMenuBar().add(menuMasterData, 1);

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/16 07:28 8/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 //configure ToolBar

 UIToolBar tbMasterData = new UIToolBar();

 UIButton butDBEdit = createToolBarButton
 ("doOpenDBEdit", null, "DB Edit",
 UIImage.getImage(UIImage.SEARCH_LARGE));

 tbMasterData.add(butDBEdit);

 getLauncher().addToolBar(tbMasterData);
 }

 //~~
 // Actions
 //~~

 /**
 * Opens the edit screen.
 */
 public void doOpenDBEdit()
 {
 //TODO open the workscreen
 }

} // FirstApplication

Methode Beschreibung

afterLogin

Diese Methode wird von der Superklasse aufgerufen nachdem eine erfolgreiche
Anmeldung durchgeführt wurde. Wir verwenden diese Methode um unser Menü
und unsere ToolBar zu erweitern.

Es ist nicht nötig nach der Abmeldung die Änderungen rückgängig zu machen,
da dies von der Superklasse übernommen wird.

doOpenDBEdit Diese Methode wird aufgefufen wenn das Menü oder der ToolBar Button
gedrückt werden.

createMenuItem

Wird von der Superklasse bereitgestellt um Menü Einträge zu erstellen. Der
erste Parameter enthält die Bezeichnung der Methode die aufgerufen werden
soll wenn der Menü Eintrag gedrückt wird. Der zweite Parameter enthält den
Befehl (ActionCommand) der in unserem Fall keine Rolle spielt. Im dritten
Parameter ist der Text des Menü Eintrags zu definieren und abschließend wird
das Bild für den Eintrag übergeben.

createToolBarButton Ähnlich wie createMenuItem nur wird hierbei ein Button erzeugt, der sich dem
Layout der ToolBar anpasst.

UIImage.getImage Liefert ein vordefiniertes Bild aus der Bild Bibliothek von JVx
Wir verwenden zwecks Komfort ein vordefiniertes Bild.

Wir erstellen nun die Client Klasse für unseren WorkScreen:

File / New / Class
src.client, apps.firstapp.frames.DBEditFrame

2026/01/16 07:28 9/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

und verwenden folgenden Source Code:

DBEditFrame.java

package apps.firstapp.frames;

import jvx.rad.genui.container.UIGroupPanel;
import jvx.rad.genui.container.UIInternalFrame;
import jvx.rad.genui.control.UITable;
import jvx.rad.genui.layout.UIBorderLayout;
import jvx.rad.remote.AbstractConnection;
import jvx.rad.remote.MasterConnection;

import com.sibvisions.rad.application.Application;
import com.sibvisions.rad.model.remote.RemoteDataBook;
import com.sibvisions.rad.model.remote.RemoteDataSource;

/**
 * A simple database table editor.
 *
 * @author René Jahn
 */
public class DBEditFrame extends UIInternalFrame
{
 //~~
 // Class members
 //~~

 /** the application. */
 private Application application;

 /** the communication connection to the server. */
 private AbstractConnection connection;

 /** the DataSource for fetching table data. */
 private RemoteDataSource dataSource = new RemoteDataSource();

 /** the contacts tabl. */
 private RemoteDataBook rdbContacts = new RemoteDataBook();

 //~~
 // Initialization
 //~~

 /**
 * Creates a new instance of DBEditFrame for a specific application.
 *
 * @param pApp the application
 * @throws Throwable if the remote access fails

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=6

2026/01/16 07:28 10/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 */
 public DBEditFrame(Application pApp) throws Throwable
 {
 super(pApp.getDesktopPane());

 application = pApp;

 initializeModel();
 initializeUI();
 }

 /**
 * Initializes the model.
 *
 * @throws Throwable if the initialization throws an error
 */
 private void initializeModel() throws Throwable
 {
 //we use a new "session" for the screen
 connection = ((MasterConnection)application.getConnection()).
 createSubConnection("apps.firstapp.frames.DBEdit");
 connection.open();

 //data connection
 dataSource.setConnection(connection);
 dataSource.open();

 //table
 rdbContacts.setDataSource(dataSource);
 rdbContacts.setName("contacts");
 rdbContacts.open();
 }

 /**
 * Initializes the UI.
 *
 * @throws Exception if the initialization throws an error
 */
 private void initializeUI() throws Exception
 {
 UIGroupPanel group = new UIGroupPanel();
 group.setText("Available Contacts");

 UITable table = new UITable();
 table.setDataBook(rdbContacts);

 group.setLayout(new UIBorderLayout());
 group.add(table);

 //same behaviour as centered component in BorderLayout
 setLayout(new UIBorderLayout());

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/16 07:28 11/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 add(group);

 setTitle("Contacts");
 setSize(new UIDimension(400, 500));
 }

 //~~
 // Overwritten methods
 //~~

 /**
 * Closes the communication connection and disposes the frame.
 */
 @Override
 public void dispose()
 {
 try
 {
 connection.close();
 }
 catch (Throwable th)
 {
 //nothing to be done
 }
 finally
 {
 super.dispose();
 }
 }

} // DBEditFrame

Methode Beschreibung
initializeModel Instanziert die Objekte für den Zugriff auf den Server bzw. die Daten.
InitializeUI Layouting des WorkScreen.

dispose
Beendet die Verbindung zum Server für den WorkScreen und schließt den
Frame. Die Verbindung müsste nicht explizit geschlossen werden, da dies beim
Verwerfen durch den GarbageCollector vollautomatisch passiert. In unserer
ersten Applikation ist das aber auch kein Nachteil.

createSubConnection

Wir erstellen eine eigene Verbindung zum Server. Das hat den Vorteil, dass am
Server ein eigenes Lifecycle Objekt verwendet wird. Dieses Objekt hält alle
Objekte, die vom WorkScreen benötigt werden. Nachdem der WorkScreen
geschlossen wird, wird auch der benutzte Speicher wieder freigeben. Weiters
kann jede Verbindung spezielle Parameter und Timeouts haben. Das
gewünschte Lifecycle Objekt wird mit der Klassenbezeichnung definitert:
apps.firstapp.frames.DBEdit.

Die Klasse erstellen wir im Anschluß.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/16 07:28 12/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

Member Beschreibung

connection
Die Verbindung zum Server, speziell für den WorkScreen. Im Hintergrund wird ein
spezielles Kommunikationsprotokoll verwendet. In unserem Fall spiegelt dieses die
Klasse DirectServerConnection wieder.

dataSource
Die DataSource ist unabhängig vom Kommunikationsprotokoll und kümmert sich um die
Übertragung der Daten zwischen Client und Server. Für den Transfer wird die
connection verwendet.

rdbContacts
Das Model und der Controller für die Datenanzeige.
Der Name contacts legt fest unter welchen Namen das serverseitige Objekt im
Lifecycle Objekt zu finden ist.

table Die View für die Datenanzeige.

Der WorkScreen ist nun fertig und kann in die Applikation integriert werden. Wir implementieren nun
den fehlenden Aufruf:

FirstApplication.java

public class FirstApplication extends Application
{
 ...
 ...
 ...

 /**
 * Opens the edit screen.
 *
 * @throws Throwable if the edit frame can not be opened
 */
 public void doOpenDBEdit() throws Throwable
 {
 DBEditFrame frame = new DBEditFrame(this);

 configureFrame(frame);

 frame.setVisible(true);
 }

} // FirstApplication

Methode Beschreibung

doOpenDBEdit
Die Methode kann ohne Probleme Throwable werfen. Sämtliche Applikationsfehler
werden vom Applikationsrahmen abgefangen und in einem Informationsdialog
angezeigt.

configureFrame Diese Methode wird von der Superklasse bereitgestellt und sorgt dafür, dass alle
Frames einheitlich aussehen. Dazu zählt unter anderem das Menü Icon.

Die Client Implementierung ist nun abgeschlossen. Bevor wir die Applikation verwenden können
müssen die fehlenden Server Klassen erstellt werden. Wir erstellen folgende Klassen:

File / New / Class

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=7
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/01/16 07:28 13/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

src.server, apps.firstapp.Application

Application.java

package apps.firstapp;

import com.sibvisions.rad.server.GenericBean;

/**
 * The LCO for the application.
 *
 * @author René Jahn
 */
public class Application extends GenericBean
{

} // Application

Beschreibung
Die Klasse spiegelt das Lifecycle Objekt für eine Applikation wieder. Pro Applikation existiert genau
eine Instanz dieser Klasse. Es können somit Session übergreifende Objekte verwendet werden.

File / New / Class
src.server, apps.firstapp.Session

Session.java

package apps.firstapp;

import com.sibvisions.rad.persist.jdbc.DBAccess;
import com.sibvisions.rad.persist.jdbc.IDBAccess

/**
 * The LCO for the session.
 *
 * @author René Jahn
 */
public class Session extends Application
{
 //~~
 // User-defined methods
 //~~

 /**
 * Returns access to the database.
 *
 * @return the database access
 * @throws Exception if a connection error occurs

http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=8
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=9

2026/01/16 07:28 14/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 */
 public IDBAccess getDBAccess() throws Exception
 {
 DBAccess dba = (DBAccess)get("dBAccess");

 if (dba == null)
 {
 dba = new HSQLDBAccess();

 dba.setUrl("jdbc:hsqldb:hsql://localhost/firstappdb");
 dba.setUsername("sa");
 dba.setPassword("");
 dba.open();

 put("dBAccess", dba);
 }

 return dba;
 }

} // Session

Beschreibung
Die Klasse spiegelt das Lifecycle Objekt für eine Session wieder. Eine Session beginnt in unserem Fall
mit der Anmeldung an die Applikation und endet mit der Abmeldung. Pro Session existiert genau eine
Instanz dieses Objektes. Es können somit Objekte für die Dauer der Anmeldung verwendet werden.

Durch die Ableitung von apps.firstapp.Application ist es auf einfachste Art und Weise
möglich, auch die Applikationsobjekte zu verwenden.
Methode Beschreibung

getDBAccess
Öffnet eine neue Verbindung zu einer HSQL Datenbank, falls dies nicht bereits
geschehen ist.

Das Exception Handling wird vom Server übernommen.

File / New / Class
src.server, apps.firstapp.frames.DBEdit

DBEdit.java

package apps.firstapp.frames;

import jvx.rad.persist.IStorage;

import com.sibvisions.rad.persist.jdbc.DBStorage;

import apps.firstapp.Session;

/**
 * The LCO for the DBEdit WorkScreen.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://doc.sibvisions.com/_export/code/de/jvx/firstapp_step-by-step?codeblock=10

2026/01/16 07:28 15/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

 *
 * @author René Jahn
 */
public class DBEdit extends Session
{
 //~~
 // User-defined methods
 //~~

 /**
 * Returns the contacts storage.
 *
 * @return the contacts storage
 * @throws Exception if the initialization throws an error
 */
 public IStorage getContacts() throws Exception
 {
 DBStorage dbsContacts = (DBStorage)get("contacts");

 if (dbsContacts == null)
 {
 dbsContacts = new DBStorage();
 dbsContacts.setDBAccess(getDBAccess());
 dbsContacts.setFromClause("CONTACTS");
 dbsContacts.setWritebackTable("CONTACTS");
 dbsContacts.open();

 put("contacts", dbsContacts);
 }

 return dbsContacts;
 }

} // DBEdit

Beschreibung
Die Klasse spiegelt das Lifecycle Objekt für den DBEditFrame WorkScreen wieder. Auf die Objekte
kann ausschließlich über die SubConnection des WorkScreens zugegriffen werden.

Durch die Ableitung von apps.firstapp.Session kann auf einfachste Art und Weise auf sämtliche
Objekte der Session und der Application zugegriffen werden.
Methode Beschreibung

getContacts
Ermöglicht den Zugriff auf die Datenbanktabelle CONTACTS. Der Methodenname muss
dem Objektnamen des RemoteDataBook entsprechen: contacts ⇒ getContacts.

Das Exception Handling wird vom Server übernommen.

Die Applikation ist jetzt vollständig implementiert und lauffähig. Damit wir nun mit der Applikation
arbeiten können benötigen wir die Datenbank inklusive Tabelle CONTACTS auf die wir zugreifen
wollen. Die Konfiguration von HSQLDB wird in diesem Dokument nicht detailiert beschrieben, da die

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2026/01/16 07:28 16/16 Erste JVx Applikation (Schritt für Schritt)

Documentation - http://doc.sibvisions.com/

Beispiele auf der Projektseite detailiert und ausreichend sind. In nachfolgendem Kapitel finden Sie
eine kurze Zusammenfassung der notwendigen Schritte.

Datenbank erstellen

Folgende Schritte sollten durchgeführt werden um eine HSQLDB zu erstellen und zu starten.

Kopieren Sie den HSQLDB JDBC-Teiber (hsqldb.jar) in das Verzeichnis
../JVxFirstApp/libs/server/
Fügen Sie den JDBC-Treiber dem CLASSPATH des JVxFirstApp Projektes hinzu
Erstellen Sie eine Datenbank mit dem Alias firstappdb und folgender Tabelle:

CREATE TABLE CONTACTS
(
 ID INTEGER IDENTITY,
 FIRSTNAME VARCHAR(200) NOT NULL,
 LASTNAME VARCHAR(200) NOT NULL,
 BIRTHDAY DATE,
 STREET VARCHAR(200),
 NR VARCHAR(200),
 ZIP VARCHAR(4),
 TOWN VARCHAR(200)
)

SStarten Sie die Datenbank z.B.:

java -cp ../libs/server/hsqldb.jar org.hsqldb.Server -database.0
 file:firstappdb -dbname.0 firstappdb

Die erste Applikation

Nachdem die Datenbank gestartet wurde kann die Applikation ebenfalls gestartet werden. Die fertige
Applikation sollte nun wie folgt aussehen:

Den Source Code und das Eclipse Projekt finden Sie auch im Download Bereich.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/de/jvx/firstapp_step-by-step

Last update: 2024/11/18 10:22

http://doc.sibvisions.com/de/jvx/example_applications
http://doc.sibvisions.com/
http://doc.sibvisions.com/de/jvx/firstapp_step-by-step

	Table of Contents
	[Verzeichnisstruktur]
	[Verzeichnisstruktur]
	[Verzeichnisstruktur]
	Verzeichnisstruktur
	Projektkonfiguration
	Applikationsentwicklung
	Erstellen eines WorkScreens
	Datenbank erstellen
	Die erste Applikation

