
2026/02/19 11:32 1/1 Replace JVx' standard Application With ProjX

Documentation - https://doc.sibvisions.com/

Table of Contents

2026/02/19 11:32 1/3 Replace JVx' standard Application With ProjX

Documentation - https://doc.sibvisions.com/

If you have an application based on JVx' standard application frame, it's very easy to use ProjX. The
standard application doesn't contain a workscreen manager, automatic menu/toolbar creation, and
automatic logon. This missing features and much more are part of our ProjX application frame. It's a
simple RemoteWorkScreen application (defined by JVx). The JVx' standard Application frame is a
RemoteApplication without workscreen management. The RemoteWorkScreenApplication extends
RemoteApplication and adds workscreen support.

Simply do the following:

Add projx.jar and appsclient.jar to libs/client
Add appserver.jar to libs/server
Delete your custom application class or extend com.sibvisions.apps.projx.ProjX
Change your launcher (run configuration) if you don't need a custom application and use
com.sibvisions.apps.projx.ProjX as first argument (instead of your custom application)
Add an application.xml to your application package
Set value of Application.Login.application to your application name
Change your launcher (run configuration) and add the full qualified resource path of your
application.xml as second argument

The launcher should have two arguments, e.g.
com.sibvisions.apps.projx.ProjX /com/company/shop/application.xml
(optional) Style your application:

Application.Login.image (e.g. /com/company/shop/images/login.png),
Application.Desktop.image (e.g. /com/company/shop/images/background.jpg),
Application.Desktop.topimage (e.g. /com/company/shop/images/top-shadow.png),
Application.Desktop.background (e.g. 255,255,255)
(optional) Configure autologin:

Application.Login.username
Application.Login.password
(and be sure that Application.authenticator contains
com.sibvisions.apps.auth.UserPwdAuthenticator)

After the above steps, start the application. You'll see an exception because the workScreenAccess
object wasn't found! This object should be added to your session LCO because it's responsible for the
menu/toolbar configuration. The interface IWorkScreenAccess defines all relevant methods.

ProjX contains two implementations: DBWorkScreenAccess and MemWorkScreenAccess. The
DBWorkScreenAccess needs some tables and views in order to work, so for a first test the
MemWorkScreenAccess should be good enough. Use the following snippet and add it to your
Session.java

public IWorkScreenAccess getWorkScreenAccess() throws exception
{
 IWorkScreenAccess wsac = (IWorkScreenAccess)get("workScreenAccess");

 if (wsac == null)
 {
 MemWorkScreenAccess mwsac = new MemWorkScreenAccess();

 WorkScreenConfig woscManager= new WorkScreenConfig();

https://doc.sibvisions.com/applications/application_properties

2026/02/19 11:32 2/3 Replace JVx' standard Application With ProjX

Documentation - https://doc.sibvisions.com/

woscManager.setClassName("com.company.shop.screens.ManagerWorkScreen");
 woscManager.setMenuStructure("Shop");
 woscManager.setText("Manager");

 mwsac.addScreen(woscManager);

 put("workScreenAccess", mwsac);

 return mwsac;
 }

 return wsac;
}

Be sure that your session class is configured as master session object in your config.xml:

...

<lifecycle>
 <mastersession>com.company.shop.Session</mastersession>
</lifecycle>

The next important thing is that you extend your workscreens from DataSourceWorkScreen:

ManagerWorkScreen extends DataSourceWorkScreen

instead of

ManagerWorkScreen extends UIInternalFrame

Use the following default constructor:

public ManagerWorkScreen(RemoteWorkScreenApplication pApp,
 AbstractConnection pConnection,
 Map<String, Object> pParameter) throws Throwable
{
 super(pApp, pConnection, pParameter);

 initializeModel();
 initializeUI();
}

Please remove the code from your screen which opens a new subconnection or a RemoteDataSource.
The connection will be opened automatically from ProjX (see constructor parameter pConnection) and
the RemoteDataSource will be created from DataSourceWorkScreen. Simply call getDataSource() to
get access.

The DataSourceWorkScreen removes the boiler plate code from your screens and usually your
screens don't take care of application-specific problems like save/reload or open/close. It's possible to
take care but not necessary in most screens!

Start your application again and everything should work without problems. It's also possible to

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2026/02/19 11:32 3/3 Replace JVx' standard Application With ProjX

Documentation - https://doc.sibvisions.com/

configure the welcome screen for fast test iterations. To do this, set the parameter
Application.WelcomeScreen in your application.xml.

The following ZIP archive contains templates: JVx to ProjX Templates

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/applications/jvx_to_projx

Last update: 2020/07/08 12:57

https://doc.sibvisions.com/_media/applications/jvx_to_projx.zip
https://doc.sibvisions.com/
https://doc.sibvisions.com/applications/jvx_to_projx

	Table of Contents

