
2026/02/09 14:42 1/1 Addressing the Server via JNDI

Documentation - http://doc.sibvisions.com/

Table of Contents

2026/02/09 14:42 1/3 Addressing the Server via JNDI

Documentation - http://doc.sibvisions.com/

The server for JVx clients is instantiated either at the current JVM or at the application server (e.g.,
Tomcat, JBoss). In the current VM, the call

Server server = new Server();

is sufficient to create a server instance. However, this creates that risk that multiple server instances
are created (which may well be desirable). The following method is available to treat the server as a
singleton:

Server server = Server.getInstance();

In doing so, we additionally attempt to address a server instance via JNDI.

A new instance of the server is created at the application server using ServletServer. This is
accomplished by the following call:

Server server = Server.getInstance();

If the server is available as a JNDI resource, the application server handles the instantiation of the
server. This way one server instance could be used for all applications of an application server.

A global JNDI resource for the application server Tomcat is configured as follows:

conf/server.xml:

server.xml

<GlobalNamingResources>
 ...
 ...
 ...
 <Resource auth="Container"
 factory="org.apache.naming.factory.BeanFactory"
 name="globalserver"
 type="com.sibvisions.rad.server.Server"/>

</GlobalNamingResources>

<DefaultContext>
 <ResourceLink name="jvx/server"
 global="globalserver"
 type="com.sibvisions.rad.server.Server" />
</DefaultContext>

The ResourceLink in the DefaultContext can also be defined in the META-INF/context.xml of the
respective web application. This always depends on the configuration of the server or the web
application. One possible example:

context.xml

http://doc.sibvisions.com/_export/code/jvx/server/security/server_jndi?codeblock=3
http://doc.sibvisions.com/_export/code/jvx/server/security/server_jndi?codeblock=4

2026/02/09 14:42 2/3 Addressing the Server via JNDI

Documentation - http://doc.sibvisions.com/

<?xml version="1.0" encoding="UTF-8"?>
<Context>
 <ResourceLink name="jvx/server"
 global="globalserver"
 type="com.sibvisions.rad.server.Server" />
</Context>

To only make the server available for single web applications via JNDI, it should be configured as
follows:

META-INF/context.xml:

context.xml

<?xml version="1.0" encoding="UTF-8"?>

<Context>
 <Resource name="jvx/server" auth="Container"
 type="com.sibvisions.rad.server.Server"
 factory="org.apache.naming.factory.BeanFactory"/>
</Context>

We always recommend the configuration of the deployment descriptor, whether the server is
provided for all applications or only for single web applications:

web.xml

<web-app ...>
 ...
 ...
 ...
 <resource-ref>
 <description>Object factory for Server instances.</description>
 <res-ref-name>jvx/server</res-ref-name>
 <res-ref-type>com.sibvisions.rad.server.Server</res-ref-type>
 <res-auth>Container</res-auth>
 </resource-ref>

</web-app>

In the case of a global server, the deployment descriptor would not have to be adapted, although it is
recommended to better manage the utilized resources.

Note

If the server is configured globally, we have to provide all of the application data – such as the rad

http://doc.sibvisions.com/_export/code/jvx/server/security/server_jndi?codeblock=5
http://doc.sibvisions.com/_export/code/jvx/server/security/server_jndi?codeblock=6

2026/02/09 14:42 3/3 Addressing the Server via JNDI

Documentation - http://doc.sibvisions.com/

directory, .class files, etc. – also globally since the applications class loader is not used!

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/server/security/server_jndi

Last update: 2020/06/25 10:47

http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/server/security/server_jndi

	Table of Contents

