
2025/07/03 02:46 1/3 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Table of Contents
Introduction 1 ...
Of Technologies and Factories 1 ...

The Basics 1 ..
The Patterns 1 ..
Like an Onion 1 ...

Technology 2 ..
Extension 2 ..
Implementation 3 ...
UI 3 ..

Why is the UI Layer Necessary? 3 ...
The Factory 5 ..
Piecing It Together 6 ...
What Else? 6 ..
Adding a New Technology 6 ...
Conclusion 7 ..

Resource and UI Resource 7 ..
The Basics 7 ..
Creating Custom Components 8 ..
Bolting on Functionality 9 ...
An Important Note About the Component Hierarchy 9 ..
The Special Case of Containers 10 ..
Conclusion 14 ..

Launchers and Applications 14 ..
Starting an Application 14 ..
Following the Chain 14 ..
Entry Point 15 ...
The Launcher 16 ...
The Application 18 ..
Notes on the Launcher 18 ...
Conclusion 18 ..

Databooks 19 ..
What Is It? 19 ..
Row Definition 19 ...

Column Definition 20 ...
Metadata 20 ...
Data Type 20 ...

Data Row 20 ..
Data Page 21 ...
Databook 21 ..
Usage Example 21 ..

Accessing the Data With Strings 22 ...
No Primitives, Objects Only 22 ...
Where Are the Data Pages? 23 ..

Master/Detail 23 ...
Conclusion 24 ..

Application Basics 24 ..
Multitier Architecture 24 ...
Launchers 24 ...

2025/07/03 02:46 2/3 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

The Simplest JVx Application: Just the GUI 25 ...
Anatomy of a Remote JVx Application 25 ...

DBAccess, Accessing a Database 26 ..
DBStorage, Preparing the Database Access for Databooks 26 ..
Life Cycle Objects, the Business Objects With All the Logic 27 ..
Server, Serving It Up 28 ...
Connection, Connecting to a Server 28 ..
Master- and Sub-Connections, Client-Side Life Cycle Management 29 ..
DataSource, Preparing the Connection for the Databook 29 ...
Databook, Accessing Data 30 ..

Interactive Demo 30 ...
The JVx Application: Manual Example 30 ...
Abstractions at Every Step 32 ..
Just Like That 32 ...

CellEditors 33 ..
What Are They? 33 ...
Why Do They Exist? 34 ..
And the Table? 35 ...
How Many Are There? 35 ...
Using CellEditors 35 ...
Instance Sharing 36 ...
A Closer Look at the CellEditorHandler 36 ...
CellRenderers 37 ..
Conclusion 38 ..

Custom Components 38 ..
The GUI of JVx 38 ..
Custom Components at the UI Layer 38 ...
Custom Controls at the Technology Layer 41 ..

Creating an Interface 41 ..
Extending the Component, if Needed 42 ...
Creating the Implementation 42 ..
Extending the Factory 43 ...
Creating the UIComponent 43 ..
Using the Custom Factory 44 ...
Using Our New Component 44 ...

Wrapping Custom Components With UICustomComponent 45 ..
Conclusion 45 ..

FormLayout 45 ...
Basics 45 ..
Creating Constraints 46 ..
Interactive Demo 50 ...
The Simplest Usage: Flow-Like 50 ...

Java 51 ...
Lua (Demo Application) 51 ...

The Most Obvious Usage: Grid-Like 52 ...
Java 52 ...
Lua (Demo Application) 53 ...

The More Advanced Usage: Anchor Configuration 53 ..
Java 53 ...
Lua (Demo Application) 54 ...

Conclusion 54 ..

2025/07/03 02:46 3/3 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Events 54 ...
What Are Events… 54 ..
…And Why Do I Need to Handle Them? 55 ...
Terminology 55 ...
Attaching Listeners 55 ..

Class 55 ...
Inlined Class 56 ..
JVx Style 56 ..
Lambdas 57 ...
Method References 57 ...

Parameters or No Parameters? To Throw or Not to Throw? 58 ..
Creating Your Own Events 58 ...
Additional Methods 59 ...
Fire Away! 60 ..

2025/07/03 02:46 1/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Version: 1.0 / 2019-07-01

Introduction

This collection of various tutorials is aimed at providing you with a broad overview over the concepts
and mechanics of the JVx application framework.

Of Technologies and Factories

Let’s talk about the UI layer, the implementations, and the factory that powers it all.

The Basics

For everyone who does not know, JVx allows you to write code once and run it on different GUI
frameworks without changing your code. This is achieved by hiding the concrete GUI implementations
behind our own classes, the UI classes, and providing “bindings” for different GUI frameworks behind
the scenes. Such a “single sourcing” approach has many advantages, one of which is that migrating
to a new GUI framework requires only the change of a single line: the one that controls which factory
is used.

The Patterns

The factory pattern is an important pattern in object-oriented programming It empowers us to
delegate the creation of objects to another object that is not known at design and/or compile time.
That allows us to use objects which have not been created by us but merely “provided” to us by an
unknown-to-us source.

The bridge pattern, on the other hand, describes a technique which wraps implementations in another
implementation and forwards all or most functionality to that wrapped implementation. This allows us
to mix and match functionality without the need to have it in all implementations at once.

Like an Onion

JVx is separated into different layers with the UI layer being at the top and of the most concern to
users.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://en.wikipedia.org/wiki/Single-source_publishing
https://en.wikipedia.org/wiki/Factory_%28object-oriented_programming%29
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Bridge_pattern
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 2/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Technology

Obviously, the first one in the chain is the so-called “technology” layer. It represents the UI
technology – for example Swing, JavaFX or Vaadin – that is used to power the JVx application.

To put it more simply:

public class JButton {}

Extension

Next comes the extension layer. Components from the technology are extended to support needed
features of JVx. This includes creating bindings for the databook, additional style options, and
changing of behavior, if necessary. From time to time, this also includes creating components from
scratch if the provided ones do not meet the needs, or there simply are none with the required
functionality. For the most part, we do our best that these layers can be used without JVx, meaning
that they represent a solitary extension to the technology. A very good example is our JavaFX
implementation, which compiles into two separate jars, the first being the complete JVx/JavaFX stack,
the second being stand-alone JavaFX extensions that can be used in any application and without JVx.

Theoretically, one can skip this layer and directly jump to the implementation layer, but, so far, it has
proven necessary (for cleanliness of the code, object structure, and sanity reasons) to create a
separate extension layer.

public class JExtendedButton extends JButton {}

https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jbutton
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvxfx/
https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jbutton

2025/07/03 02:46 3/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Implementation

After that comes the implementation layer. These implementations of the JVx interfaces are the actual
objects returned by the factory. This is some sort of “glue” layer: it binds the technology or extended
components against the interfaces which are provided by JVx.

public class SwingButton implements IButton {}

UI

Last, but definitely not least, is the UI layer, which wraps the implementations. It is completely
implementation-independent, which means that one can swap out the stack underneath:

This is achieved because the UI layer is not extending the implementation layer but wrapping
instances provided by the factory. It is oblivious to what technology is actually underneath it.

public class UIButton implements IButton {}

SwingButton resource = SwingFactory.createButton()

Why is the UI Layer Necessary?

It isn’t, not at all. The implementations could be used directly without any problems, but having yet
another layer has two key benefits:

It allows easier usage.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 4/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

It allows to add technology-independent features.

By wrapping it one more time, we gain a lot of freedom which we would not have otherwise when it
comes to features and coding. The user does not need to call the factory directly and, instead, just
needs to create a new object:

IButton button = new UIButton();

Internally, of course, the factory is called and an implementation instance is created, but that is an
implementation detail. If we would use the implementation layer directly, our code would need to
know about the implementations, which doesn’t follow the single-sourcing principle:

IButton button = new SwingButton();

It also would be possible to directly use the factory, but that makes it quite tedious to type:

IButton button = UIFactoryManager.getFactory().createButton();

Both can be avoided by using another layer that the factory calls for us:

public class UIButton implements IButton
{
 private IButton resource;

 public UIButton()
 {
 resource = UIFactoryManager.getFactory().createButton();
 }

 public void someInterfaceMethod()
 {
 resource.someInterfaceMethod();
 }
}

Additionally, this layer allows us to implement features that can be technology-independent. Our
naming scheme, which we created during stress testing of a Vaadin application, is a very good
example of that. The names of the components are derived in the UI layer without any knowledge of
the underlying technology or implementation.

Also, it provides us (and everyone else, of course) with a layer which allows to rapidly and easily build
compound components out of already existing ones, like this:

public class LabeledButton extends UIPanel
{
 private IButton button = null;
 private ILabel label = null;

 public LabeledButton ()
 {
 super();

2025/07/03 02:46 5/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 initializeUI();
 }

 private void initializeUI()
 {
 button = new UIButton();
 label = new UILabel();

 setLayout(new UIBorderLayout());
 add(label, UIBorderLayout.LEFT);
 add(button, UIBorderLayout.CENTER);
 }
}

Of course, that is not even close to sophisticated, or even a good example for that matter. However, it
shows that one can build new components out of already existing ones without having to deal with
the technology or implementation at all, creating truly cross-technology controls.

The Factory

The heart piece of the UI layer is the factory that is creating the implemented classes. It’s a rather
simple system, a singleton which is set to the technology-specific implementation and can be
retrieved later:

// At the start of the application.
UIFactoryManager.setFactoryInstance(new SwingFactory());
// Or alternatively:
UIFactory.getFactoryInstance(SwingFactory.class());

// Later inside the UI wrappers.
IButton button = UIFactory.getFactory().createButton();

The complexity of the implementation of the factory is technology dependent, but for the most part it
is devoid of any “interesting” logic:

public class SwingFactory implements IFactory
{
 @Override
 public IButton createButton()
 {
 SwingButton button = new SwingButton();
 button.setFactory(this);

 return button;
 }
}

It “just returns new objects” from the implementation layer. That’s about it when it comes to the

2025/07/03 02:46 6/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

factory, it is as simple as that.

Piecing It Together

With all this in mind, we know now that JVx has swappable implementations underneath its UI layer
for each technology it utilizes:

Changing between them can be as easy as setting a different factory. I say “can” because that is only
true for Swing, JavaFX, and similar technologies. Vaadin, obviously, requires some more setup work.
Theoretically, one could embed a complete application server and launch it when the factory for
Vaadin is created, allowing the application to be basically stand alone and started as easily as a Swing
application. That is possible.

What Else?

That is how JVx works in regards to the UI layer. It depends on “technology-specific stacks”, which can
be swapped out and implemented for pretty much every GUI framework out there. We currently
provide support for Swing, JavaFX, and Vaadin, but we also had implementations for GWT and Qt.
Additionally, we support a “headless” implementation, which uses lightweight objects that can be
serialized and send over the wire without much effort.

Adding a New Technology

Adding support for a new technology is as straightforward as one can imagine: simply create the
extensions/implementations layers and implement the factory for that technology. Giving a complete
manual would be out for scope for this document, but the most simple approach to adding a new
stack to JVx is to start with stubbing out the IFactory and implementing IWindow. Once that one
window shows up, it’s just implementing one interface after another in a quite straightforward
manner. In the end, your application can switch to yet another GUI framework without the need to
change your code.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 7/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Conclusion

Even though the stack of JVx is more complicated compared with other GUI or application frameworks,
this complexity is set off by the benefits it brings. One can change the used GUI technology without
much effort and, most importantly, without touching the application logic at all.

Resource and UI Resource

Let’s talk about resources and UI resources and why they sound similar yet are not the same.

The Basics

We’ve encapsulated by a wrapper class. A “UI resource”, on the other hand, is an encapsulated
concrete implementation of one of the interfaces on the UI layer.

Let’s do a short overview of how the JVx architecture looks like in regards to the GUI stack:

The UI wrappers are the main UI classes that are used to create the GUI (e.g., UIButton). These are
wrapping the implementations (e.g., SwingButton), which themselves are wrapping the
extension/technology (e.g., a JVxButton/JButton). Only the UI and implementation classes
implementing the interface are required for the component (e.g., IButton). That also means that the
implementation is dependent on the extension/technology component, but the UI can use any object
which implements the interface.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 8/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Now, with that knowledge, we can start defining what is what:

The resource itself, accessed by calling <uiwrapper>.getResource(), is the extension/technology
component. The UI resource can be accessed by calling <uiwrapper>.getUIResource(). The UI
component can be accessed by calling <uiwrapper>.getUIComponent() and is usually the UI
wrapper class itself. If we use our previous Swing example, the resource would be a
JVxButton/JButton, the UI resource would be the SwingButton and the UI component would be
the UIButton.

As one can see, access to all objects which comprise GUI possible at all times. We, of course, have the
UI component, we can access the implementation component, and we can access the
extension/technology component. Theoretically, we could also swap them at runtime, but in JVx, this
is limited to the construction of the object to greatly reduce the potential for error and complexity of
the framework code.

Creating Custom Components

We will use an example from the part about creating custom components, which we will come to
later. The BeepComponent is a simple UIComponent extension that contains a label and two buttons
inside itself.

public class BeepComponent extends UIComponent<IPanel>
{
 public BeepComponent()
 {
 super(new UIPanel());

 UIButton highBeepButton = new UIButton("High Beep");

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 9/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 highBeepButton.eventAction().addListener(Beeper::playHighBeep);

 UIButton lowBeepButton = new UIButton("Low Beep");
 highBeepButton.eventAction().addListener(Beeper::playLowBeep);

 UIFormLayout layout = new UIFormLayout();

 uiResource.setLayout(layout);
 uiResource.add(new UILabel("Beep"), layout.getConstraints(0, 0, -1,
0));
 uiResource.add(highBeepButton, layout.getConstraints(0, 1));
 uiResource.add(lowBeepButton, layout.getConstraints(1, 1));
 }
}

We are setting a new UI resource (a UIPanel) in the constructor (at line #5), which is to be used by
the UI component. In this case, it is not an implementation, but another UI component. However,
that doesn’t matter because the UI resource must only implement the expected interface. At line #15
we start using that custom UI resource.

Because UI component is an abstract component designed for exactly this usage, the example might
not be the most exciting one, but it clearly illustrates the mechanics.

Bolting on Functionality

Also, from the part about creating custom components, we can reuse the PostfixedLabel as
example:

private UILabel testLabel = new UILabel()
{
 public UILabel()
 {
 super(new PostfixedLabel("", "-trial"));
 }
};

Now testLabel will be using the PostfixedLabel internally but with no indication to the user of
the object that this is the case. This allows us to extend the functionality of a component completely
transparently, especially in combination with functions that return a UI component and similar.

An Important Note About the Component Hierarchy

If we create a simple component extensions, like the BeepComponent above, it is important to note
that there is one other layer of indirection in regards to the hierarchy on the technology layer. If we
create a simple frame with the BeepComponent in it, one might expect the following hierarchy:

 UI Technology

2025/07/03 02:46 10/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

--------------------- ----------------------
 UIFrame Frame
 \-UIPanel \-Panel
 \-BeepComponent \-BeepComponent
 \-Panel
 |-Label
 |-Button
 \-Button

with the BeepComponent added and its subcomponents as its children. However, the actual hierarchy
looks like this:

 UI Technology
--------------------- ----------------------
 UIFrame Frame
 \-UIPanel \-Panel
 \-BeepComponent \-Panel
 |-Label
 |-Button
 \-Button

That is because such extended components are not “passed” to the technology; they only exist on
the UI layer because they do not have a technology component which could be used. That is done by
adding the UI component to the UI parent, but for adding the actual technology component, the set
UI resource is used.

The Special Case of Containers

Another special case is containers. For example, we could create a panel that displays an overlay in
certain situations, and we will need to use that throughout the whole application.

2025/07/03 02:46 11/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

That means we do not want to build it every time anew, so one option would be to use a factory
method to “wrap” the content. Something like this:

UIFormLayout panelLayout = new UIFormLayout();
panelLayout.setHorizontalAlignment(UIFormLayout.ALIGN_CENTER);
panelLayout.setVerticalAlignment(UIFormLayout.ALIGN_CENTER);

UIPanel panel = new UIPanel();
panel.setLayout(panelLayout);
panel.add(new UILabel("Firstname"), panelLayout.getConstraints(0, 0));
panel.add(new UITextField("John"), panelLayout.getConstraints(1, 0));
panel.add(new UILabel("Lastname"), panelLayout.getConstraints(2, 0));
panel.add(new UITextField("Doe"), panelLayout.getConstraints(3, 0));
panel.add(new UILabel("Street"), panelLayout.getConstraints(0, 1));
panel.add(new UITextField("Old R. Road"), panelLayout.getConstraints(1, 1,
3, 1));
panel.add(new UILabel("ZIP"), panelLayout.getConstraints(0, 2));
panel.add(new UITextField("11946"), panelLayout.getConstraints(1, 2));
panel.add(new UILabel("Place"), panelLayout.getConstraints(2, 2));
panel.add(new UITextField("Hampton Bays"), panelLayout.getConstraints(3,
2));

parentContainer.add(OverlayPanelFactory.wrap(panel), UIBorderLayout.CENTER);

And the wrap method itself:

public static final UIPanel wrap(IComponent pContent)
{
 UILabel overlayLabel = new UILabel("FOR YOUR
EYES ONLY");

2025/07/03 02:46 12/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 overlayLabel.setBackground(null);
 overlayLabel.setFont(UIFont.getDefaultFont().deriveFont(UIFont.BOLD,
48));
 overlayLabel.setForeground(UIColor.createColor("#3465a4"));
 overlayLabel.setHorizontalAlignment(UILabel.ALIGN_CENTER);

 UIFormLayout layout = new UIFormLayout();

 UIPanel panel = new UIPanel();

 panel.setLayout(layout);
 panel.setBackground(UIColor.createColor("#3465a4"));
 panel.add(overlayLabel, layout.getConstraints(0, 0, -1, -1));
 panel.add(pContent, layout.getConstraints(0, 0, -1, -1));

 return panel;
}

This is easy enough, but let’s say we’d like to add logic to that wrapper. At that point, it becomes
more complicated. We can’t use the same technique as the custom component from above because,
in that case, the “overlaying panel” would simply not be displayed. However, there is a similar
mechanism for containers: setting the UI resource container.

The UI resource container is another special mechanism that works similar to setting the UI resource,
but it works the other way round. While setting the UI resource “hides” components from the
technology in UI layer, setting the UI resource container hides components from the UI layer while
they are added in the technology. As it is a little complicated, here is our example using this
technique again:

public static class OverlayedPanel extends UIPanel
{
 public OverlayedPanel()
 {
 super();

 UILabel overlayLabel = new UILabel("FOR YOUR
EYES ONLY");
 overlayLabel.setBackground(null);
 overlayLabel.setFont(UIFont.getDefaultFont().deriveFont(UIFont.BOLD,
48));
 overlayLabel.setForeground(UIColor.createColor("#3465a4"));
 overlayLabel.setHorizontalAlignment(UILabel.ALIGN_CENTER);

 UIPanel innerPanel = new UIPanel();

 UIFormLayout layout = new UIFormLayout();

 setLayout(layout);
 setBackground(UIColor.createColor("#3465a4"));
 add(overlayLabel, layout.getConstraints(0, 0, -1, -1));
 add(innerPanel, layout.getConstraints(0, 0, -1, -1));

2025/07/03 02:46 13/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 setUIResourceContainer(innerPanel);
 }
}

What we’ve done is extended a UI panel (line #1), setting it up and adding children, and then we’ve
declared one of its children as the UI resource container (line #22). So all methods that are specific to
UI container (adding children, setting a layout, etc.) are now forwarding to the inner panel and
manipulating the contents of the overlaid panel directly.

And here is how it is used:

UIFormLayout panelLayout = new UIFormLayout();
panelLayout.setHorizontalAlignment(UIFormLayout.ALIGN_CENTER);
panelLayout.setVerticalAlignment(UIFormLayout.ALIGN_CENTER);

UIPanel panel = new OverlayedPanel();
panel.setLayout(panelLayout);
panel.add(new UILabel("Firstname"), panelLayout.getConstraints(0, 0));
panel.add(new UITextField("John"), panelLayout.getConstraints(1, 0));
panel.add(new UILabel("Lastname"), panelLayout.getConstraints(2, 0));
panel.add(new UITextField("Doe"), panelLayout.getConstraints(3, 0));
panel.add(new UILabel("Street"), panelLayout.getConstraints(0, 1));
panel.add(new UITextField("Old R. Road"), panelLayout.getConstraints(1, 1,
3, 1));
panel.add(new UILabel("ZIP"), panelLayout.getConstraints(0, 2));
panel.add(new UITextField("11946"), panelLayout.getConstraints(1, 2));
panel.add(new UILabel("Place"), panelLayout.getConstraints(2, 2));
panel.add(new UITextField("Hampton Bays"), panelLayout.getConstraints(3,
2));

parentContainer.add(panel, UIBorderLayout.CENTER);

Notice that we can use it as any other panel (line #5) and simply add it to the parent (line #18). For a
user of the API, it is transparent as to whether there are more components or not. This is also visible
in the created component hierarchy:

 UI Technology
--------------------- ----------------------
 UIPanel Panel
 \-OverlayedPanel \-Panel
 |-UILabel |-Label
 |-UITextField \-Panel
 |-UILabel |-Label
 |-UITextField |-TextField
 |-UILabel |-Label
 |-UITextField |-TextField
 |-UILabel |-Label
 |-UITextField |-TextField
 |-UILabel |-Label
 \-UITextField |-TextField
 |-Label

2025/07/03 02:46 14/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 \-TextField

This makes it very easy to have containers which add additional components without the actual GUI
noticing or caring.

Conclusion

Because of the way the JVx framework is designed, it is easy to access all layers of the GUI framework
and facilitate the usage of these layers to create custom components and allow easy access to the
wrapped components, no matter on what layer or of what kind they are.

Launchers and Applications

Let’s talk about launchers, and how they are used to start JVx applications.

Starting an Application

From a technical point of view, there are two prerequisites which must be fulfilled before a JVx
application can run:

The JVM must have started.
The technology specific system must have started.

Then, and only then, the JVx application can run. Depending on the implementation that is used, that
can be as easy as instancing the factory (Swing, JavaFX), but it can also mean that a servlet server
has to start (Vaadin). Because we do not wish to encumber our applications with technology-specific
code, we have to entrust all this to an encapsulated entity, meaning the implementations of
ILauncher and IApplication.

Following the Chain

The steps for getting an application to start are as follows:

The first thing that must run is, obviously, the JVM. Without it, we won’t have much luck starting
anything!
The launcher must be created, and it must start the technology.
The launcher then creates the application, which the user is seeing.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 15/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

So we need two classes, the ILauncher implementation that knows how to start the technology and
the IApplication implementation. That we already knew, so let’s try to put this into code. For
simplicity reasons (and because I don’t want to write a complete factory from scratch for this
example), we will reuse the Swing implementation and write a new launcher and application for it.

Entry Point

The main class that we will use as example is very straightforward:

public class Main
{
 public static void main(String[] pArgs)
 {
 // All we have to do here is kickoff the creation of the launcher.
 // The launcher will do everything that is required to start for us.
 //
 // In a real world scenario and/or application there might be more
 // setup or groundwork required, for example processing the
arguments,
 // but we don't need any of that here.
 new SwingLauncher();
 }
}

All we have to do there is start the launcher itself. As the comment suggests, there might be work
required for a “real” application startup. For this example, however, it is all we need to do. Of course,
we could also directly embed this little function into the launcher implementation itself to save us one

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/03 02:46 16/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

class.

The Launcher

The ILauncher implementation, on the other hand, contains quite a bit of logic but nothing
unmanageable:

public class SwingLauncher extends SwingFrame
 implements ILauncher
{
 // We have to extend from SwingFrame because there is no factory
 // instantiated at that point, so we can't use UI components.

 private IApplication application;

 public SwingLauncher()
 {
 super();

 try
 {
 SwingUtilities.invokeAndWait(this::startup);
 }
 catch (InvocationTargetException | InterruptedException e)
 {
 e.printStackTrace();
 }
 }

 @Override
 public void dispose()
 {
 try
 {
 // We must notify the application that we are being disposed.
 application.notifyDestroy();
 }
 catch (SecurityException e)
 {
 e.printStackTrace();
 }

 super.dispose();

 // We have to make sure that the application is exiting when
 // the frame is disposed of.
 System.exit(0);
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+swingutilities
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+invocationtargetexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+interruptedexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+securityexception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

2025/07/03 02:46 17/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 private void startup()
 {
 // We create a new SwingFactory and it is directly registered as
global
 // instance, that means it will be used by all components which are
 // created from now on.
 UIFactoryManager.getFactoryInstance(SwingFactory.class);

 // Also we set it as our factory instance.
 setFactory(UIFactoryManager.getFactory());

 // Because the IApplication implementation we use is based upon
 // UI components (which is advisable) we have to wrap this launcher
 // in an UILauncher.
 UILauncher uiLauncher = new UILauncher(this);

 // Now we create the main application.
 // Note that the ExampleApplication is already based upon
 // UI components.
 application = new ExampleApplication(uiLauncher);

 // Then we add the application as content to the launcher.
 uiLauncher.add(application);

 // Perform some setup work and start everything.
 uiLauncher.pack();
 uiLauncher.setVisible(true);

 // We also have to notify the application itself.
 application.notifyVisible();
 }

 // SNIP
}

In short, the launcher is kicking off the Swing thread by invoking the startup method on the main
Swing thread. This startup method will instantiate the factory and then create the application. From
there, we only need to set it to visible and then our application has started.

The launcher extends from SwingFrame. That is required because there hasn’t been a factory
created yet that could be used by UI components to create themselves. If we’d try to use an UI
component before creating/setting a factory, we would see the constructor of the component fail with
a NullPointerException.

The method startup() is invoked on the main Swing thread, which also happens to be the main UI
thread for JVx in this application. Once we are on the main UI thread, we can create the application,
add it, and then set everything to visible.

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 18/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

The Application

The IApplication implementation is quite short because we extend
com.sibvisions.rad.application.Application, an IApplication implementation created
with UI components.

public class ExampleApplication extends Application
{
 public ExampleApplication(UILauncher pParamUILauncher)
 {
 super(pParamUILauncher);
 }

 @Override
 protected IConnection createConnection() throws Exception
 {
 // Not required for this example.
 return null;
 }

 @Override
 protected String getApplicationName()
 {
 return "Example Application";
 }
}

Because the launcher has previously started the technology and created the factory, we can now use
UI components, which means we are already independent of the underlying technology. So, the
IApplication implementation can already be used with different technologies and is completely
independent.

Notes on the Launcher

As you might have noticed, in our example the launcher is a (window) frame. That makes sense for
nearly every desktop GUI toolkit, as they all depend upon a window as the main method to display
their applications. But the launcher could also be simpler: for example, just a call to start the GUI
thread. Or it could be something completely different: for example, an incoming HTTP request.

Also, don’t forget that the launcher is providing additional functionality to the application, like saving
file handles, reading and writing the configuration, and similar platform and toolkit-dependent
operations. See the launcher for Swing for further details.

Conclusion

This example demonstrates how a simple launcher is implemented and why it is necessary to have a

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://sourceforge.net/p/jvx/code/HEAD/tree/trunk/java/swing/src/com/sibvisions/rad/ui/swing/impl/SwingApplication.java

2025/07/03 02:46 19/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

launcher in the first place. Compared with the “JVx are of course a lot more complex than these
examples, that is because they implement all the required functionality and also take care of a lot of
boiler plate operations. It is taking care of all technology specific code and allows to keep your
application free from knowing about the platform it runs on.

Databooks

Let’s talk about databooks, which allow access to data without any effort.

What Is It?

Databooks are an active model that allow you to directly query and manipulate the data. Contrary to
many other systems, JVx does not map the data into objects, but allows you to directly access it in a
table-like fashion exposing columns, rows, and values.

One could say that it is like a three dimensional array with these dimensions:

DataPages
DataRows
Columns/Values

with DataPages containing DataRows, which in turn contain the values and everything referencing the
RowDefinition, which further outlines how a row looks like.

Row Definition

The row definition defines what columns are available in the row and stores some additional
information about them, like the names of the primary key columns. You can think of the row
definition as the headers of a table.

https://sourceforge.net/projects/jvx/
https://en.wikipedia.org/wiki/Unique_key

2025/07/03 02:46 20/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Its creation and usage is rather simple, and, if you’re working with RemoteDataBooks there is no need
to create one at all, as it is automatically created when the databook is opened. A row definition holds
and manages column definitions, which define the columns.

RowDefinition rowDefinition = new RowDefinition();
rowDefinition.addColumnDefinition(columnDefinitionA);
rowDefinition.addColumnDefinition(columnDefinitionB);
rowDefinition.addColumnDefinition(columnDefinitionC);

dataBook.setRowDefinition(rowDefinition);

Column Definition

The column definition defines and provides all necessary information about the column, like its
datatype, its size, and whether it is nullable or not. You can think of it as one column in a table.

ColumnDefinition columnDefinition = new ColumnDefinition("NAME", new
StringDataType());
columnDefinition.setNullable(false);

Metadata

Most of the column definition is additional information about the column, like if it is nullable, the label
of the column, default values, allowed values, and similar information.

Data Type

Of course, we must define what type the value in the column has. This is done by setting a data type
on the column definition. The data type defines what kind of values the column holds, like if it is a
string, a number, or something else. We provide the most often used data types out of the box:

BigDecimal
BinaryData
Boolean
Long
Object
String
Timestamp

It is possible to add new data types by simply implementing IDataType.

Data Row

The data row represents a single row of data; it holds/references its own row definition and, of course,
provides access to the values of the row. Accessing the data row can be done either by column index

2025/07/03 02:46 21/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

or column name, and the methods either return or accept objects. Let’s look at a simple usage
example:

DataRow dataRow = new MemDataRow(rowDefinition);

String value = (String)dataRow.getValue("COLUMN_A");

dataRow.setValue("COLUMN_A", "New Value");

Data Page

The data page is basically a list of data rows. It also holds its own row definition, which is shared with
all the contained data rows.

The main usage of data pages is to allow paging in a master/detail relationship. If the master selects a
different row, the detail databook selects the related data page.

Databook

The databook is the main model of JVx, it provides direct access to its current data page and data row
by extending from IDataRow and IDataPage.

By default, the databook holds one data page and only has multiple data pages if it is the detail in a
master/detail relationship.

Usage Example

Here is a simple example of a MemDataBook, an IDataBook implementation that only operates in
memory:

// Create a new instance.
IDataBook dataBook = new MemDataBook();
// Set the name.
dataBook.setName("test");
// Add some columns.
dataBook.getRowDefinition().addColumnDefinition(new ColumnDefinition("ID",
new LongDataType()));
dataBook.getRowDefinition().addColumnDefinition(new
ColumnDefinition("COLUMN_STRING", new StringDataType()));
// Open it, so that it can be used.
dataBook.open();

// Insert a new row.
dataBook.insert(false);
dataBook.setValue("ID", Long.valueof(0));

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+long

2025/07/03 02:46 22/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

dataBook.setValue("COLUMN_STRING", "VALUE");

// Insert a new row.
dataBook.insert(false);
dataBook.setValue("ID", Long.valueof(1));
dataBook.setValue("COLUMN_STRING", "VALUE_A");

// Save the currently selected row.
// Note that the first one has been saved implicitely
// when the selection changed to the new row.
dataBook.saveSelectedRow();

// Change the first row.
dataBook.setSelectedRow(0);
dataBook.setValue("COLUMN_STRING", "VALUE_NEW");
dataBook.saveSelectedRow();

// Delete the second row.
dataBook.setSelectedRow(1);
dataBook.delete();

Accessing the Data With Strings

One of the major advantages of the databook concept is that there is no need to create new classes
to represent each table, view, or query result. One can always use the databook directly and easily,
and model changes don’t necessitate changes on the client side. The downside to this approach is
that we lose compile time checks because we access the data dynamically. However, this can be
mitigated by using EPlug, an Eclipse plugin which provides compile time checks and many more
features.

No Primitives, Objects Only

We do not provide overloads to fetch primitives. This is because there are mainly three types of data
inside a database:

Numbers
Text
Binary Data

Text and binary data are both objects (arrays of primitives are objects after all) and numbers are
either primitives or objects. Most of the time, if we deal with numbers inside a database, we want
them to be of arbitrary precision, which means we must represent them as BigDecimal. Supporting
double or float in these cases would be dangerous because one might write a float into the
database , which might or might not end up with the correct value in the database. To completely
eliminate such problems, we only support objects, which means that one is “limited” to the usage of
number extensions like BigLong and BigDecimal, which do not suffer from such problems.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+long
https://marketplace.eclipse.org/content/eplug-jvx
https://en.wikipedia.org/wiki/Floating-point_arithmetic

2025/07/03 02:46 23/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Where Are the Data Pages?

What is not clear from this example is how and when data pages are used. As a matter of fact, most
of the time there is no need to think about data pages because they are managed directly by the
databook, and, if used like this, there is only one data page. Multiple data pages will be used if there
is a master/detail relationship defined, in which case the databook selects the correct data page
automatically.

Master/Detail

Master/detail is something that occurs in nearly every data model. It simply means that there is one
master data set that is referenced by one or multiple detail data sets. Or to express it in SQL:

SELECT
 *
FROM
 MASTER m
 LEFT JOIN DETAIL d ON m.ID=d.MASTER_ID;

We can, of course, express a master/detail relationship when using databooks. For that, we just create
a ReferenceDefinition and assign it to the detail databook:

// Create the master.
IDataBook masterDataBook = new MemDataBook();
masterDataBook.setName("master");
masterDataBook.getRowDefinition().addColumnDefinition(new
ColumnDefinition("ID", new LongDataType()));
masterDataBook.open();

// Create the detail.
IDataBook detailDataBook = new MemDataBook();
detailDataBook.setName("detail");
detailDataBook.getRowDefinition().addColumnDefinition(new
ColumnDefinition("ID", new LongDataType()));
detailDataBook.getRowDefinition().addColumnDefinition(new
ColumnDefinition("MASTER_ID", new LongDataType()));
// Set it as detail of the master.
detailDataBook.setReferenceDefinition(new ReferenceDefinition(new Streing[]
{"MASTER_ID"}, masterDataBook, new String[] {"ID"});
detailDataBook.open();

Let’s assume the following data for illustrative purposes:

MASTER DETAIL
====== =================
 ID ID | MASTER_ID
------ ------|----------
 1 1| 1

https://en.wikipedia.org/wiki/Master%E2%80%93detail_interface#Data_model
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/03 02:46 24/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 2 2| 1
 3 3| 2
 4| 2
 5| 2
 6| 3
 7| 3
 8| 3

Now, if we select the second row in the masterDataBook, the detailDataBook will just contain the
rows with the corresponding MASTER_ID, so 3, 4, and 5.

MASTER DETAIL
====== =================
 ID ID | MASTER_ID
------ ------|----------
 1 3| 2
S 2 4| 2
 3 5| 2

The detailDataBook is automatically adjusted according to the selection in the masterDatabook.
Of course, this can have an arbitrary depth too.

Conclusion

The databook is the backbone of JVx: it provides a clean and easy way to access and manipulate data.
At the same time, it is flexible and can be customized to specific needs with ease.

Application Basics

Let’s talk about the basics: how a JVx application starts, how it works, and how the connection strings
together the client and server side.

Multitier Architecture

JVx is designed to be Multitier by default. It allows a clean and easy separation of processes and
makes it easy to build, maintain and extend applications by separating the client, server and data
storage.

Launchers

The following method is a simplified way to launch a JVx application. Normally, you’d use the
technology specific launcher to launch the application. These launchers do know exactly what is

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://en.wikipedia.org/wiki/Multitier_architecture
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 25/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

required to set it up and start the technology and the application. However, covering the launchers is
out of scope for this post, so we will review them and their mechanics in a follow-up.

The Simplest JVx Application: Just the GUI

But first, we will start without anything. The most simple application you can create with JVx is an
application which opens a single window and only works with in-memory data (if at all). This can be
easily achieved by “just starting” the application.

The JVx GUI is a simple layer on top of the Technology which implements the actual functionality. So if
we want to have a GUI we’ll need to initialize the factory before doing anything else:

UIFactoryManager.getFactoryInstance(SwingFactory.class);

With this little code, we have initialized everything we need to create a simple Swing application. Now
we can start to create and populate a window with something:

UIFrame frame = new UIFrame();
frame.setLayout(new UIBorderLayout());
frame.addComponent(new UILabel("Hello World!"));

frame.pack();
frame.setVisible(true);

frame.eventWindowClosed().addListener(() -> System.exit(0));

We can start to create and manipulate the GUI. In this case, we are building a simple window with a
label inside. Lastly, we make sure that the JVM will exit when the window is closed.

A very good example and showcase for that is the JVx Kitchensink.

That’s it! That is the most simple way to start a JVx application. We can use all controls, and we can
use MemDataBooks without any problem or limitation. Best of all, we can simply switch to another
technology by using another factory.

Anatomy of a Remote JVx Application

Of course, JVx wouldn’t be that useful if it would just provide static GUI components. Now, to explain
what else is required for a remote JVx application, I have to go far afield, so let’s head down the rabbit
hole.

https://sourceforge.net/projects/jvx/
https://blog.sibvisions.com/2016/12/07/jvx-reference-of-technologies-and-factories/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://github.com/sibvisions/jvx.kitchensink
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 26/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

What you are seeing here is a rough sketch of how the architecture of JVx looks like. Let’s walk
through the image step by step. We will look at each successive layer and work our way from the
database on the server to the databook on the client.

DBAccess, Accessing a Database

Accessing a database is easy when using DBAccess. All we must do is to set the JDBC URL of the
server and connect to it:

DBAccess dbAccess = DBAccess.getDBAccess(
 "jdbc:postgresql://server:5432/schema",
 "username",
 "password");
dbAccess.open();

As a note, the instance returned by getDBAccess(...) is the database-specific DBAccess
extension, which knows how to handle its database.

We can, of course, use DBAccess to directly access the database:

dbAccess.executeStatement("insert into SOME_TABLE values (?, ?);",
 BigDecimal.valueOf(1),
 "Some Value");

List<Bean> data = dbAccess.executeQuery("select * from SOME_TABLE");

…or manipulate the database, query information about the database, execute procedures, or
anything else!

DBStorage, Preparing the Database Access for Databooks

The downside of using DBAccess is that everything must be database-specific. To become database-
neutral, we must use DBStorage. DBStorage does not care which database it is connected to and

https://sourceforge.net/projects/jvx/
https://en.wikipedia.org/wiki/Java_Database_Connectivity
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal

2025/07/03 02:46 27/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

can operate on any of them:

DBStorage storage = new DBStorage();
storage.setDBAccess(dbAccess);
storage.setWritebackTable("SOME_TABLE");
storage.open();

We can use this to insert, update, delete and fetch data. Additionally, the DBStorage does retrieve
and manage the metadata of the table we’ve set, which means that we can query all column names,
what type they are, we can even access the indexes and the default values. Short, the DBStorage
leaves little to be desired when it comes to operating on a database.

If we query data from the DBStorage, we receive a list of rows. The rows are either represented as
Object array, IBean, or a POJO, and we can easily manipulate the data, like this:

for (IBean row : storage.fetchBean(null, null, 0, -1))
{
 row.put("SOME_COLUMN", "new value");
 storage.update(row);
}

As one can see, it looks quite familiar to the DataBook, which isn’t a coincidence. The DBStorage
“powers” the databooks on the server side, a databook will get its data from and will send its modified
data to the DBStorage.

I’ve been using the DBStorage here as an example, but actually the storage is not dependent on a
database. IStorage can be implemented to provide any sort of data provider, like reading from an
XML or JSON file, scraping data from a website, fetching data from a different process, or reading it
directly from a hardware sensor.

Life Cycle Objects, the Business Objects With All the Logic

Life Cycle Objects, or LCOs, are the server side business objects which contain and provide the
business logic. They are created and destroyed as is requested by the client side and are used to
provide specific functionality to the client, like providing functionality specific to one screen or
workflow. This is done by RPC, Remote Procedure Calls, which means that the client is directly calling
the methods defined in the LCOs, which includes getting the Storages for the DataBooks.

There is also a security aspect to these, as you can permit one client access to a certain LCO but lock
out everyone else, which means that only that client can use the functionality provided by the LCO.

But let’s not get ahead of our selves, there are three important “layers” of LCOs which we will look at.

Application

The LCO for the application represents the application itself and provides functionality on the
application layer. It is created once for the lifetime of the application and this instance is shared by all
sessions.

https://forum.sibvisions.com/viewtopic.php?t=124
https://en.wikipedia.org/wiki/Remote_procedure_call

2025/07/03 02:46 28/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

public class Application extends GenericBean
{
}

Session

The LCO for the session represents one session, which most of the time also equals one client
connection. It provides functionality which should be session-local, like providing the database
connection which can be used.

public class Session extends Application
{
 protected DBAccess getDBAccess() throws Exception
 {
 // Code for initialization and caching of DBAccess goes here.
 }
}

Sub-Session, AKA Screen

The sub-session, also known as screen, LCO is the last in the chain. It provides functionality specific to
a certain part of the application, like a single screen, and provides the storages required to power the
databooks and other functionality.

public class MySubSession extends Session
{
 public DBStorage getTablename() throws Exception
 {
 // Code for initialization and caching of DBStorage goes here.
 }
}

Server, Serving It Up

There really isn’t much to say about the server; it accepts connections and hands out sessions. Of
course, it is not that easy, but for this guide we do not need to go into any further detail.

Connection, Connecting to a Server

The connection that strings together the client and the server is used for, obviously, the
communication between them. It can be anything from a simple direct connection that strings two
objects together to an HTTP connection that talks with a server on the other side of the planet.

By default, we provide different IConnection implementations, the DirectServerConnection,
DirectObjectConnection, the HttpConnection and the VMConnection. The

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/07/03 02:46 29/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

DirectServerConnection is a simple IConnection implementation that forwards method calls to
known objects without a layer of indirection and is used when the client and server reside inside the
same JVM. The HttpConnection communicates with the server over an HTTP connection and is used
whenever the client and server are not inside the same JVM. The DirectObjectConnection and
VMConnection are used for unit tests.

As an example, we will use the DirectServerConnection, which serves as server and connection.
It is used if the server and client reside in the same JVM.

IConnection connection = new DirectServerConnection();
// The connection will be automatically opened by the MasterConnection.

Master- and Sub-Connections, Client-Side Life Cycle Management

The MasterConnection is the main connection that is used to access the server and its
functionality. When a MasterConnection is established, a session LCO on the server is created.

MasterConnection masterConnection = new MasterConnection(connection);
masterConnection.open();

A SubConnection is a sub-connection of the MasterConnection and allows us to access specific
functionality encapsulated in an LCO. When a SubConnection is established, the requested/specified
LCO on the server is created and can be accessed through the SubConnection

SubConnection subConnection =
masterConnection.createSubConnection("MySubSession");
subConnection.open();

The SubConnection can now access the functionality provided by the application, the session, and
the LCO that was specified.

subConnection.callAction("doSomethingOnTheServer");

DataSource, Preparing the Connection for the Databook

To provide data to the databooks, we can use the connection we’ve described earlier. However, the
databook does not directly know about the connection; it expects an IDataSource, which is used as
an intermediate:

IDataSource dataSource = new RemoteDataSource(subConnection);
dataSource.open();

Of course, the RemoteDataSource is just one possible implementation of IDataSource that can be
used to provide data to the databook.

2025/07/03 02:46 30/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Databook, Accessing Data

And now we are at the other end of the chain,: at the databook on the client side. We just need to tell
our databook what data source to use, and we are done.

RemoteDataBook dataBook = new RemoteDataBook();
dataBook.setDataSource(dataSource);
dataBook.setName("storagename");
dataBook.open();

The name of the databook is used to access the DBstorage object in the LCO provided by the data
source. The mechanism for that is a simple search for a getter with the set name.

Interactive Demo

There is an interactive demo on our blog that allows you to explore the connections between the
client- and server side. The complement classes are always highlighted, and you can click on the
names of the objects to receive additional information.

The JVx Application: Manual Example

Now that we have seen all layers that make up the architecture of JVx, let's put all of that into code:

public class JVxLocalMain
{
 public static void main(String[] pArgs) throws Throwable
 {
 // ######################### Server ###########################

 // ------------------------- DBAccess -------------------------

 // The DBAccess gives us access to the database.
 DBAccess dbAccess = DBAccess.getDBAccess(
 "jdbc:h2:mem:database",
 "",
 "");
 dbAccess.open();

 // We'll insert some data for this example.
 dbAccess.executeStatement("create table if not exists TEST("
 + "ID int primary key auto_increment,"
 + "NAME varchar(128) default '' not null);");
 dbAccess.executeStatement("insert into TEST values (1, 'Name A');");
 dbAccess.executeStatement("insert into TEST values (2, 'Name B');");
 dbAccess.executeStatement("insert into TEST values (3, 'Name C');");

https://blog.sibvisions.com/wp-content/uploads/2017/04/lifecycle-objects-demo.html
https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/07/03 02:46 31/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 // ------------------------ DBStorage -------------------------

 // Our sole storage.
 DBStorage testStorage= new DBStorage();
 testStorage.setDBAccess(dbAccess);
 testStorage.setWritebackTable("TEST");
 testStorage.open();

 // ---------------- LCO / Session / Application ---------------

 // We are skipping the LCO, Session and Application in this example.

 // ################### Network / Connection ###################

 // For this example we are initializing a DirectObjectConnection,
which
 // does not require a server.
 // It is designed to be used mainly for unit testing.
 DirectObjectConnection connection = new DirectObjectConnection();
 connection.put("test", testStorage);

 // ########################## Client ##########################

 // --------------------- MasterConnection ---------------------

 MasterConnection masterConnection = new
MasterConnection(connection);
 masterConnection.open();

 // ---------------------- SubConnection -----------------------

 // We are skipping the SubConnection in this example.

 // ------------------------ DataSource ------------------------

 IDataSource dataSource = new RemoteDataSource(masterConnection);
 dataSource.open();

 // ------------------------- DataBook -------------------------

 RemoteDataBook dataBook = new RemoteDataBook();
 dataBook.setDataSource(dataSource);
 dataBook.setName("test");
 dataBook.open();

 // You can use the DataBook here.

 // Perform cleanup of all opened objects here.
 }
}

2025/07/03 02:46 32/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

With this little example, we have a wholly working JVx application. We provide ways to create most of
this out of the box and read most of it from configuration files, so there really is little code to be
written. See the JVx FirstApp as a perfect example of this.As you can see, there is rarely any need to
write such code; all you have to do is create a new application and start it.

Additionally, we could combine this long example with the simple one from before to initialize and
create a GUI that could use our RemoteDataBook, like this:

// Insert after the RemoteDataBook has been created.

// Set the UI factory which should be used, in this case it is
// the SwingFactory.
UIFactoryManager.getFactoryInstance(SwingFactory.class);

UIFrame frame = new UIFrame();
frame.setLayout(new UIBorderLayout());
frame.add(new UITable(dataBook));

frame.pack();
frame.setVisible(true);

frame.eventWindowClosed().addListener(() -> System.exit(0));

Abstractions at Every Step

As you can see, you always have full control over the framework and can always tailor it to your
needs. There is always the possibility to provide a custom implementation:

Accessing an unsupported database can be achieved by extending DBAccess.
Having a different service/way of providing data can be implemented on top of IStorage.
Supporting a different connection can be implemented on top of IConnection.
And a completely different way of providing data can be implemented on top of IDataSource.

You can swap out every layer and provide custom and customized implementations, which work
exactly as you require.

Just Like That

Just like that, we’ve walked through the whole stack of a JVx application, from the database, which
holds the data, all the way to the client GUI. Of course, there is much more going on in a full-blown
JVx application. For example, I’ve spared you here the details of the configuration, server, network,
and providing actual LCOs. However, all in all, this should get you going.

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvxfirstapp/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 33/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

CellEditors

Let’s talk about CellEditors and how they are decoupled from the surrounding GUI.

What Are They?

While we’ve already covered large parts of how the GUI layer of technologies and factories and JVx
work, the CellEditors have been left completely untouched and unmentioned. One might believe that
they can be easily explained together with the editors. However, they are a topic of their own – and a
complex one at that.

The difference between editors (the UIEditor for the most part) and CellEditors is that the editors
only provide the high-level GUI control, while the CellEditors provide the actual functionality. Let’s
take a look at a simple screen.

We see a window with a table on the left and some editors on the right, simple enough. Now these
components we are seeing are UIEditors, not CellEditors. The CellEditors themselves are only
added as child components to the editors, so the editors are basically just panels which contain the
actual CellEditor.

2025/07/03 02:46 34/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Technically, every UIEditor is just another panel that gets the CellEditor added. The CellEditors
themselves follow the same pattern as all GUI components in JVx: there is the base interface, an
eventual extension of technology components, the implementation, and, finally, the UI object. They
are, however, rarely directly used in building the GUI but mostly only referenced when building the
model.

Why Do They Exist?

If you want to make GUI editor components, I know of two possible ways off the top of my head to
achieve that: you create dedicated editor components for the datatypes that are available, for
example a NumberEditor, TextEditor, and so forth, or you create one editor component that acts as a
mere container and allows you to plug in any wanted behavior for the type you’re editing.

We’ve opted for the second option because it means that the GUI is actually decoupled from the
datatypes (and in extension the data) of the model. If we’d have separate components for each
datatype, changing the datatype of a single column would mean that you’d have to touch all editors
associated with that column and change that code, maybe with rippling effects on the rest of the GUI.
With the CellEditors, one can change the datatype of a column and not worry about the GUI that is
associated with that column. The CellEditor is changed on the model once and that change is
automatically picked up by all editors. This also means that one can define and change defaults very
easily and globally.

Of course, one can also set the preferred or wanted CellEditor directly on the editor instead of using
the one defined in the model should the need arise.

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 35/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

And the Table?

The same applies to the table. Theoretically, every cell of the table can be viewed as a single editor,
for this context at least. So a single cell behaves the same as an editor when it comes to how the
CellEditors are handled.

How Many Are There?

JVx comes with a variety of CellEditors out of the box:

Boolean
Choice
Date/Time
List
Number
Text

HTML
Multiline
Password
Standard

With these, nearly all needs can be covered. If there is need for a new one, it can be created and
added like any other UI component.

Using CellEditors

As said previously, which CellEditor is used is defined primarily with the model. For example:

private void initiliazeModel() throws ModelException
{
 dataBook = new MemDataBook();

 ICellEditor cellEditor = new UITextCellEditor();
 IDataType dataType = new StringDataType(cellEditor);
 ColumnDefinition column = new ColumnDefinition("COLUMN", dataType);

 RowDefinition rowDefinition = dataBook.getRowDefinition();
 rowDefinition.addColumnDefinition(column);

 dataBook.open();
}

private void initializeUI() throws ModelException
{
 editor = new UIEditor(dataBook, "COLUMN");

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 36/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 add(editor);
}

We can see that every column has a datatype and every datatype has a CellEditor. That allows the
model to provide the actual editing functionality without changing the GUI code. The editor, when
notifyRepaint() is called, will fetch the CellEditor from the datatype and use it. Additionally, there
is a technology-dependent default mechanism that allows this system to work even when the UI
classes are not used.

Let’s do a step-by-step explanation of what happens:

The model is created.
The GUI is created.
The model invokes notifyRepaint() on all bound controls.
The editor gets the CellEditor from the model and adds it to itself.

Instance Sharing

If we revisit the example code from above, we will notice that the CellEditor instance is set on the
model and must then be used by the editor. That means that a single CellEditor instance is used for
all bound editors. We all know that sharing instances in such a way can be fun, but, in this case, it is
not a problem because CellEditors are only “factories” for the actual editing components.

The ICellEditor interface actually only specifies two methods: whether or not it is a direct cell
editor, and the factory method for creating an ICellEditorHandler. The CellEditorHandler is the
manager of the instance of the component that is going to be embedded into the editor.

notifyRepaint() is called on the editor.
The Editor gets the CellEditorHandler from the CellEditor.
The Editor gets the component from the CellEditorHandler and embeds it.

This mechanism makes sure that no component instances end up shared between different GUI
components.

A Closer Look at the CellEditorHandler

If we take a good look at the CellEditorHandler interface, we see that it contains everything that is
required for setting up a component to be able to edit data coming from a data row. One method is
especially important: the getCellEditorComponent() function. It returns the actual technology
component that is to be embedded into the editor. That means that, even though there are
implementations for the CellEditors on the UI layer, the actual components that will provide the
functionality for editing the data are implemented on the technology layer. A short refresher:

2025/07/03 02:46 37/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Revisiting our simple screen from above, we’d actually need to represent it as something like this:

Because the embedded components in the editor are actually on the technology layer.

CellRenderers

2025/07/03 02:46 38/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

There is another small topic we need to discuss, CellRenderers. They follow nearly the same
schematics as CellEditors but are used to display values directly; for example, values in a table cell.
The table is also the primary component that uses them to display the cell values until the editing is
started. For simplicity's sake, most CellEditors implement ICellRenderer directly and provide
management of the created component. That is because the reuse of components for barely
displaying values is easier and doesn't have as much potential for error.

Conclusion

CellEditors provide an easy way to edit data, and, more importantly, they are decoupled from the GUI
code in which they are used in a way that allows the model to change, even dynamically. This enables
programmers to create and edit screens and models quickly without the need to check if the GUI and
the model fit together because they always will.

Custom Components

Let’s talk about custom components, and how to create them.

The GUI of JVx

We’ve previously covered how the GUI of JVx works, and now we will have a look at how we can add
custom components to the GUI.

In the terminology of JVx, there are two different kinds of custom components:

UI based
Technology based

We will look at both, of course.

Custom Components at the UI Layer

The simplest way to create custom components is to extend and use already existing UI classes like
UIPanel or UIComponent. These custom components will be technology-independent because they
use technology-independent components. There is no need to know about the underlying technology.
You can think of them as a “remix” of already existing components.

The upside is that you never have to deal with the underlying technology, but the downside is that
you can only use already existing components (custom drawing is not possible).

Let’s look at a very simple example. Te will extend the UILabel to always display a certain postfix
along with the set text:

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 39/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

public class PostfixedLabel extends UILabel
{
 private String postfix = null;

 // We must store the original text so that we can return
 // it if requested. Otherwise we could only return the text
 // with the appended postfix, which works unless the postfix
 // changes.
 private String text = null;

 public PostfixedLabel()
 {
 super();
 }

 public PostfixedLabel(String pText)
 {
 super(pText);
 }

 public PostfixedLabel(String pText, String pPostfix)
 {
 super(pText);

 setPostfix(pPostfix);
 }

 @Override
 public String getText()
 {
 return text;
 }

 @Override
 public void setText(String pText)
 {
 text = pText;

 if (!StringUtil.isEmpty(postfix) &&
!StringUtil.isEmpty(pText))
 {
 // We translate the text and the postfix now separately,
 // the underlying label will obviously try to translate
 // the concatenated version.
 super.setText(translate(pText) + translate(postfix));
 }
 else
 {
 super.setText(pText);
 }
 }

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/03 02:46 40/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 public String getPostfix()
 {
 return postfix;
 }

 public void setPostfix(String pPostfix)
 {
 postfix = pPostfix;

 // If the postfix changed, we must update the text.
 setText(text);
 }
}

It will be treated just like another label, but every time a text is set, the postfix is appended to it.

Another example: we want a special type of component one that always does the same but will be
used in many different areas of the application. It should contain a label and two buttons. The best
approach for a custom component that should not inherit any specific behavior is to extend
UIComponent:

public class BeepComponent extends UIComponent<UIPanel>
{
 public BeepComponent()
 {
 super(new UIPanel());

 UIButton highBeepButton = new UIButton("High Beep");
 highBeepButton.eventAction().addListener(Beeper::playHighBeep);

 UIButton lowBeepButton = new UIButton("Low Beep");
 highBeepButton.eventAction().addListener(Beeper::playLowBeep);

 UIFormLayout layout = new UIFormLayout();

 uiResource.setLayout(layout);
 uiResource.add(new UILabel("Press for beeping..."),
layout.getConstraints(0, 0, -1, 0));
 uiResource.add(highBeepButton, layout.getConstraints(0, 1));
 uiResource.add(lowBeepButton, layout.getConstraints(1, 1));
 }
}

So we extend UIComponent and set a new UIPanel as UIResource on it, which we can use later and
which is the base for our new component. After that, we added a label and two buttons which will play
beep sounds if pressed. This component does not expose any specific behavior as it extends
UIComponent. It only inherits the most basic properties, like background color and font settings, yet
it can easily be placed anywhere in the application and will perform its duty.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2025/07/03 02:46 41/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Custom Controls at the Technology Layer

The more complex option is to create a custom component at the technology layer. That means we
have to go through a multi-step process to create and use the component:

Create an interface for the functionality you’d like to expose1.
Extend the technology component (if needed)2.
Implement the necessary interfaces for JVx3.
Extend the factory to return the new component4.
Create a UIComponent for the new component5.
Use the new factory6.

I will walk you through this process step by step.

The upside is that we can use any component that is available to us in the technology. The downside
is that it is quite a bit of work to build the correct chain, ideally for every technology.

Creating an Interface

The first step is to think about what functionality the component should expose. We will use a
progress bar as an example. We don’t want anything fancy for now, a simple progress bar on which
we set a percent value should be more than enough:

/**
 * The platform and technology independent definition for a progress bar.
 */
public interface IProgressBar extends IComponent
{
 /**
 * Gets the current value, in percent.
 *
 * @return the current value. Should be between {@code 0} and {@code
100}.
 */
 public int getValue();

 /**
 * Sets the current value, in percent.
 *
 * @param pValue the value. Should be between {@code 0} and {@code 100}.
 */
 public void setValue(int pValue);
}

It might not be the most sophisticated example (especially in regards to documentation), but it will do
for now. This interface will be the foundation for our custom component.

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 42/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Extending the Component, if Needed

We will be using Swing and the JProgressBar for this example, so the next step is to check if we
must add additional functionality to the technology component. In our case we don’t, as we do not
demand any behavior that is not provided by JProgressBar, but, for the sake of the tutorial, we will
still create an extension of JProgressBar.

public class ExtendedProgressBar extends JProgressBar
{
 public ExtendedProgressBar(int pMin, int pMax)
 {
 super(pMin, pMax);
 }
}

Within this class, we could now implement additional behavior independent of JVx. For example, we
provide many extended components for Swing, JavaFX, and Vaadin with additional features but
without depending on JVx. The extension layer is the perfect place to extend already existing
components with functionality that will be used by, but is not dependent on, JVx.

Creating the Implementation

The next step is to create an implementation class that allows us to bind our newly extended
JProgressBar to the JVx interfaces. Luckily, there is the complete Swing implementation
infrastructure we can use:

public class SwingProgressBar extends SwingComponent
 implements IProgressBar
{
 public SwingProgressBar()
 {
 // We can hardcode the min and max values here, because
 // we do not support anything else.
 super(new ExtendedProgressBar(0, 100));
 }

 @Override
 public int getValue()
 {
 return resource.getValue();
 }

 @Override
 public void setValue(int pValue)
 {
 resource.setValue(pValue);
 }
}

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jprogressbar
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 43/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

That’s it already. Again, in this case it is quite simple because we do not expect a lot of behavior. The
implementation layer is the place to “glue” the component to the JVx interface, implementing missing
functionality that is depending on JVx and “translating” and forwarding values and properties.

Extending the Factory

Now, we must extend the factory to be aware of our new custom component, which is equally as
simple as our previous steps. First, we extend the interface:

public interface IProgressBarFactory extends IFactory
{
 public IProgressBar createProgressBar();
}

And then we extend the SwingFactory:

public class ProgressBarSwingFactory extends SwingFactory
 implements IProgressBarFactory
{
 @Override
 public IProgressBar createProgressBar()
 {
 SwingProgressBar progressBar = new SwingProgressBar();
 progressBar.setFactory(this);
 return progressBar;
 }
}

Again, it is that easy.

Creating the UIComponent

So that we can use our new and shiny progress bar easily, and without having to call the factory
directly, we wrap it one last time in a new UIComponent:

public class UIProgressBar extends UIComponent<IProgressBar>
 implements IProgressBar
{
 public UIProgressBar()
 {
 // We'll assume that, whoever uses this component,
 // is also using the correct factory.
super(((IProgressBarFactory)UIFactoryManager.getFactory()).createProgressBar
());
 }

 @Override
 public int getValue()

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/

2025/07/03 02:46 44/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 {
 return uiResource.getValue();
 }

 @Override
 public void setValue(int pValue)
 {
 uiResource.setValue(pValue);
 }
}

Nearly done, we can almost use our new and shiny component in our project.

Using the Custom Factory

Of course, we have to tell JVx that we want to use our factory and not the default one. Depending on
the technology used, this is done at different places.

Swing and JavaFX

Add the factory setting to the application.xml of the application:

<Launcher.uifactory>your.package.with.custom.components.SwingProgressBarFact
ory</Launcher.uifactory>

Vaadin

Add the following setting to the web.xml under the WebUI Servlet configuration:

<init-param>
 <param-name>Launcher.uifactory</param-name>
 <param-
value>your.package.with.custom.components.VaadinProgressBarFactory</param-
value>
</init-param>

Using Our New Component

Now we are done. From here we can use our custom component like any other.

UIProgressBar progressBar = new UIProgressBar();
progressBar.setValue(65);

// Skip

https://sourceforge.net/projects/jvx/

2025/07/03 02:46 45/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

add(progressBar, constraints);

Wrapping Custom Components With UICustomComponent

There is a third way to have technology-dependent custom components in JVx. You can wrap them
within a UICustomComponent:

JProgressBar progressBar = new JProgressBar(0, 100);
progressBar.setValue(100);

UICustomComponent customProgressBar = new UICustomComponent(progressBar);

// Skip

add(customProgressBar, constraints);

This has the upside of being fast and easy, but the downside is that your code has to know about the
currently used technology and it is no longer easily portable.

Conclusion

As you can see, there are multiple ways of extending the default set of components that are provided
by JVx, depending on the use case and what custom components are required. It is very easy to
extend JVx with all the components one requires.

FormLayout

Let’s talk about the FormLayout and why the anchor system makes it much more flexible than a
simple grid.

Basics

JVx comes with five layouts out of the box:

null/none/manual
BorderLayout
FlowLayout
GridLayout
FormLayout

Of these five, the first four are easily explained. Only the FormLayout needs some more information
because it might not be as easy to grasp off the bat as the others.

https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jprogressbar
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+jprogressbar
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
http://forum.sibvisions.com/viewtopic.php?f=11&t=167&p=219

2025/07/03 02:46 46/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

The FormLayout uses a dependent anchor system. An anchor in this context is a position inside the
layout that is calculated from parent anchors and either the size of the component or a fixed value. So
we can say there are two different types of anchors inside the FormLayout that we are concerned
about:

Autosize anchors, its position is calculated from the component assigned to it.
Fixed anchors, its position is fixed.

Additionally, there are three special cases of fixed anchors:

Border anchors, which surround the FormLayout at its border.
Margin anchors, which are inset from the border by the defined value.
Gap anchors, which are added to create a gap between components.

When it comes to calculating the position of an anchor, the position of the parent anchor is
determined, and then the value of the current anchor is added (which is either the size of a
component or a fixed value). Simplified and in pseudo-code it can expressed like this:

public int getPosition(Anchor pAnchor)
{
 int parentPosition = 0;

 if (pAnchor.getParent() != null)
 {
 parentPosition = getPosition(pAnchor.getParent());
 }

 if (pAnchor.isAutoSize())
 {
 return parentPosition + pAnchor.getComponent().getWidth();
 }
 else
 {
 return parentPosition + pAnchor.getValue();
 }
}

With this knowledge, we are nearly done with completely understanding the FormLayout.

Creating Constraints

Now, the second important part after the basics is knowing how the constraints are created. For
example this:

panel.add(component, layout.getConstraints(0, 0));

2025/07/03 02:46 47/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

With the coordinates of 0,0, no new anchors are created. Instead, the component is attached to the
top and left margin anchor. Two new autosize anchors (horizontal and vertical) are created and
attached to the component.

We now add a second component in the same row:

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));

2025/07/03 02:46 48/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Because we are still on row 0, the component is attached to the top margin anchor and the previous
autosize anchor for this row. Then, a new gap anchor will be created, which is attached to the trailing
autosize anchor of the previous component.

We can, of course, also add items to the right and bottom:

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));
panel.add(component, layout.getConstraints(-1, -1));

What happens is the same as when adding a component at the coordinates 0,0, except that the
reference is the lower right corner. The component is attached to the bottom and right margin
anchors with trialing autosize anchors.

Last but not least, we can add components that span anchors:

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));
panel.add(component, layout.getConstraints(-1, -1));
panel.add(component, layout.getConstraints(2, 1, -2, -2));

2025/07/03 02:46 49/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Again, the same logic as previously applies, with the notable exception that new gap anchors are
created for all four sides. This includes variants that span anchors:

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));
panel.add(component, layout.getConstraints(0, 1, 2, 1));

The component is horizontally attached to the left margin anchor and additionally to the autosize

2025/07/03 02:46 50/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

anchor of the second column. The autosize- and gap anchors of the first column are not ignored, but
they are not relevant to this case.

At this point it is important to note that spanning and stretched components are disregarded for the
preferred size calculation of the layout. Therefore, whenever you span or stretch a component, it is
not taken into account when the preferred size of the layout is calculated, which can lead to
unexpected results.

Interactive Demo

Sometimes, however, it might not be obvious what anchors are created and how they are used. For
this, we have created a simple interactive demonstration application that allows you to inspect the
created anchors of a layout: the JVx FormLayout Visualization.

On the left is the possibility to show and hide anchors together with the information about the
currently highlighted anchor. On the right is an Lua scripting area, which allows you to quickly and
easily rebuild and test layouts. It utilizes the JVx-Lua bridge from a previous blog post and so any
changes to the code are directly applied.

The Simplest Usage: Flow-Like

Enough of the internals, let’s talk use-cases. The most simple use-case for the FormLayout can be a
container which flows its contents in a line until a certain number of items is reach, at which point it
breaks into a new line.

https://github.com/sibvisions/jvx.formlayout-visualization
https://blog.sibvisions.com/2017/09/25/jvx-lua-proof-of-concept/

2025/07/03 02:46 51/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

It does not require any interaction from us except adding components. In this case, when three
components have been added, the next one will be added to the next line and so on. This is quite
useful when all you want to do is display components in a fixed horizontal grid.

Java

layout.setNewlineCount(3);

panel.add(component);
panel.add(component);
panel.add(component);
panel.add(component);
panel.add(component);
panel.add(component);
panel.add(component);

Lua (Demo Application)

layout:setNewlineCount(3);

panel:add(stub());
panel:add(stub());
panel:add(stub());
panel:add(stub());
panel:add(stub());
panel:add(stub());

2025/07/03 02:46 52/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

panel:add(stub());

The Most Obvious Usage: Grid-Like

The FormLayout can also be used to align components in a grid and actually layout them in a grid-like
fashion.

The main difference is that columns and rows are sized according to the components and not given a
fixed-width portion of the panel.

Java

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));
panel.add(component, layout.getConstraints(2, 0, -2, 0));
panel.add(component, layout.getConstraints(-1, 0));

panel.add(component, layout.getConstraints(0, 1, 2, 1));
panel.add(component, layout.getConstraints(3, 1, -1, 1));

panel.add(component, layout.getConstraints(0, 2, -2, -1));
panel.add(component, layout.getConstraints(-1, 2, -1, -1));

2025/07/03 02:46 53/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Lua (Demo Application)

panel:add(stub(), layout:getConstraints(0, 0));
panel:add(stub(), layout:getConstraints(1, 0));
panel:add(stub(), layout:getConstraints(2, 0, -2, 0));
panel:add(stub(), layout:getConstraints(-1, 0));

panel:add(stub(), layout:getConstraints(0, 1, 2, 1));
panel:add(stub(), layout:getConstraints(3, 1, -1, 1));

panel:add(stub(), layout:getConstraints(0, 2, -2, -1));
panel:add(stub(), layout:getConstraints(-1, 2, -1, -1));

The More Advanced Usage: Anchor Configuration

Additionally, the FormLayout offers the possibility to manually set the anchor position (e.g., when it is
necessary to give the first elements a certain size). Together with the ability to span components, this
allows us to create complex and rich layouts.

Java

panel.add(component, layout.getConstraints(0, 0));
panel.add(component, layout.getConstraints(1, 0));
panel.add(component, layout.getConstraints(2, 0));

2025/07/03 02:46 54/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

panel.add(component, layout.getConstraints(0, 1));
panel.add(component, layout.getConstraints(1, 1));
panel.add(component, layout.getConstraints(2, 1));

panel.add(component, layout.getConstraints(0, 2));
panel.add(component, layout.getConstraints(1, 2));
panel.add(component, layout.getConstraints(2, 2));

layout.setAnchorConfiguration("r0=64,r1=8,r2=128,b1=32");

Lua (Demo Application)

panel:add(stub(), layout:getConstraints(0, 0));
panel:add(stub(), layout:getConstraints(1, 0));
panel:add(stub(), layout:getConstraints(2, 0));

panel:add(stub(), layout:getConstraints(0, 1));
panel:add(stub(), layout:getConstraints(1, 1));
panel:add(stub(), layout:getConstraints(2, 1));

panel:add(stub(), layout:getConstraints(0, 2));
panel:add(stub(), layout:getConstraints(1, 2));
panel:add(stub(), layout:getConstraints(2, 2));

layout:setAnchorConfiguration("r0=64,r1=8,r2=128,b1=32");

Conclusion

The JVx FormLayout allows us to quickly and easily create complex, good looking, and functioning
layouts that are still flexible enough for the cases when a component is swapped, removed, or added.
It can be used in many different circumstances and is still easy enough to use to make sure that even
beginners are able to create a basic layout within seconds.

Events

Let’s talk about events and event handling in JVx.

What Are Events…

Events are an important mechanism no matter to what programming language or framework you turn
to. They allow us to react on certain actions and “defer” actions until something triggers them. Such
triggers can be anything: a certain condition is hit in another thread, the user clicked a button, or
another action has finally finished. Long story short, you are notified that something happened and

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Event-driven_programming

2025/07/03 02:46 55/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

you can now do something further.

…And Why Do I Need to Handle Them?

Well, you can’t skip events, they are a cornerstone of JVx. Theoretically, you could use JVx without any
of its events, but you would not only miss out on a lot of functionality, but also be unable to do
anything useful. But don’t worry, understanding the event system is easy and using it even easier.

Terminology

For JVx the following terminology applies: an event is a property of an object. You can register
listeners on that event that will get invoked if the event is dispatched (fired). Every event consists of
the EventHandler, which allows ypi to register, remove, and manage the listeners and also
dispatches the events, meaning it invokes the listeners and notifies them that the event occurred.
There is no single underlying listener interface.

Within the JVx framework, every event property of an object starts with the prefix “event” to make it
easily searchable and identifiable. But enough dry talk, let’s get started.

Attaching Listeners

We will now look at all the ways on how to attach a listener to an event.

Class

The easiest way to get notified of events is to attach a class (that is implementing the listener
interface) to an event as listener, like this:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener(new ActionListener());

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }
}

private static final class ActionListener implements IActionListener
{

https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionlistener
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+actionlistener

2025/07/03 02:46 56/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 public void action(UIActionEvent pActionEvent) throws Throwable
 {
 System.out.println("Button clicked!");
 }
}

Inlined Class

Of course, we can inline this listener class:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener(new IActionListener()
 {
 public void action(UIActionEvent pActionEvent) throws Throwable
 {
 System.out.println("Button clicked!");
 }
 });

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }
}

JVx Style

So far, so good. However, in JVx we have support to attach listeners based on reflection, like this:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener(this, "doButtonClick");

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }

 public void doButtonClick(UIActionEvent pActionEvent) throws Throwable

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://sourceforge.net/projects/jvx/
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/07/03 02:46 57/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 {
 System.out.println("Button clicked");
 }
}

What is happening here is that, internally, a listener is created that references the given object and
the named method. This allows us to easily add and remove listeners from events and keeps the
classes clean by allowing us to have all related event listeners in one place without additional class
definitions.

Lambdas

Yet there is more. We can, of course, attach lambdas to the events as listeners too:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener((pActionEvent) ->
System.out.println("Button clicked"));

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }
}

Method References

Lastly, thanks to the new capabilities of Java 1.8, we can also use method references:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener(this::doButtonClick);

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }

 private void doButtonClick(UIActionEvent pActionEvent) throws Throwable
 {

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable

2025/07/03 02:46 58/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 System.out.println("Button clicked");
 }
}

Parameters or No Parameters? To Throw or Not to Throw?

By default we actually support two different classes of listeners, the specified event/listener interface
itself and jvx.rad.util.IRunnable. This means you can also attach methods that do not have
any parameters, like this:

public class MainFrame extends UIFrame
{
 public MainFrame()
 {
 super();

 UIButton button = new UIButton("Click me!");
 button.eventAction().addListener(this::doButtonClickNoParameters);
 button.eventAction().addListener(this::doButtonClickWithParameters);

 setLayout(new UIBorderLayout());
 add(button, UIBorderLayout.CENTER);
 }

 private void doButtonClickNoParameters() throws Throwable
 {
 System.out.println("Button clicked");
 }

 private void doButtonClickWithParameters(UIActionEvent pActionEvent)
throws Throwable
 {
 System.out.println("Button clicked");
 }
}

Additionally, all listeners and IRunnable itself support throwing Throwable, which is then handled
inside the EventHandler. As you can see, you are very flexible when it comes to what methods you
can attach and use as listeners.

Creating Your Own Events

You can, of course, create your own EventHandlers and listeners to create your own events. All you
need are two classes, an extension of EventHandler and a listener interface.

public class CustomEvent extends EventHandler
{

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

2025/07/03 02:46 59/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

 public CustomEvent()
 {
 super(ICustomListener.class);
 }
}

public interface ICustomListener
{
 public void somethingHappened(String pName);
}

And that’s it, from here on you can use it:

CustomEvent event = new CustomEvent();
event.addListener((pName) -> System.out.println(pName + " 1"));
event.addListener((pName) -> System.out.println(pName + " 2"));
event.addListener((pName) -> System.out.println(pName + " 3"));

event.dispatchEvent("Adam");

Additional Methods

You can also use an interface for listeners that has multiple methods, specifying in the constructor
which method to invoke:

public class CustomEvent extends EventHandler
{
 public CustomEvent()
 {
 super(ICustomListener.class, "somethingOtherHappened");
 }
}

public interface ICustomListener
{
 public void somethingHappened(String pName);
 public void somethingOtherHappened(String pName, BigDecimal pValue);
 public void nothingHappened();
}

Now every time the event is dispatched, the somethingOtherHappened method will be invoked.
However, don’t use this. The upside of having a “simple” listener interface with just one method is
that it allows us to use lambdas with it. A listener interface with multiple methods won’t allow this.

In JVx we reduced our listener interfaces to just one method (in a backward compatible way) to make
sure all events can be used with lambdas.

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
https://sourceforge.net/projects/jvx/
http://blog.sibvisions.com/2015/01/28/jvx-and-java-8-events-and-lambdas/

2025/07/03 02:46 60/60 JVx Concepts and Reference

Documentation - https://doc.sibvisions.com/

Fire Away!

That’s it for this short reference sheet. This is how our event system can and should be used. Of
course, there is much more to it under the hood (for example, listeners being wrapped in proxy
classes, reflection used for invoking methods, etc.). If you feel adventurous, be my guest and have a
good look at the internals of EventHandler. It is quite an interesting read!

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/jvx/reference

Last update: 2024/11/18 10:34

https://doc.sibvisions.com/
https://doc.sibvisions.com/jvx/reference

	Table of Contents
	Introduction
	Of Technologies and Factories
	The Basics
	The Patterns
	Like an Onion
	Technology
	Extension
	Implementation
	UI

	Why is the UI Layer Necessary?
	The Factory
	Piecing It Together
	What Else?
	Adding a New Technology
	Conclusion

	Resource and UI Resource
	The Basics
	Creating Custom Components
	Bolting on Functionality
	An Important Note About the Component Hierarchy
	The Special Case of Containers
	Conclusion

	Launchers and Applications
	Starting an Application
	Following the Chain
	Entry Point
	The Launcher
	The Application
	Notes on the Launcher
	Conclusion

	Databooks
	What Is It?
	Row Definition
	Column Definition
	Metadata
	Data Type

	Data Row
	Data Page
	Databook
	Usage Example
	Accessing the Data With Strings
	No Primitives, Objects Only
	Where Are the Data Pages?

	Master/Detail
	Conclusion

	Application Basics
	Multitier Architecture
	Launchers
	The Simplest JVx Application: Just the GUI
	Anatomy of a Remote JVx Application
	DBAccess, Accessing a Database
	DBStorage, Preparing the Database Access for Databooks
	Life Cycle Objects, the Business Objects With All the Logic
	Application
	Session
	Sub-Session, AKA Screen

	Server, Serving It Up
	Connection, Connecting to a Server
	Master- and Sub-Connections, Client-Side Life Cycle Management
	DataSource, Preparing the Connection for the Databook
	Databook, Accessing Data

	Interactive Demo
	The JVx Application: Manual Example
	Abstractions at Every Step
	Just Like That

	CellEditors
	What Are They?
	Why Do They Exist?
	And the Table?
	How Many Are There?
	Using CellEditors
	Instance Sharing
	A Closer Look at the CellEditorHandler
	CellRenderers
	Conclusion

	Custom Components
	The GUI of JVx
	Custom Components at the UI Layer
	Custom Controls at the Technology Layer
	Creating an Interface
	Extending the Component, if Needed
	Creating the Implementation
	Extending the Factory
	Creating the UIComponent
	Using the Custom Factory
	Swing and JavaFX
	Vaadin

	Using Our New Component

	Wrapping Custom Components With UICustomComponent
	Conclusion

	FormLayout
	Basics
	Creating Constraints
	Interactive Demo
	The Simplest Usage: Flow-Like
	Java
	Lua (Demo Application)

	The Most Obvious Usage: Grid-Like
	Java
	Lua (Demo Application)

	The More Advanced Usage: Anchor Configuration
	Java
	Lua (Demo Application)

	Conclusion

	Events
	What Are Events…
	…And Why Do I Need to Handle Them?
	Terminology
	Attaching Listeners
	Class
	Inlined Class
	JVx Style
	Lambdas
	Method References

	Parameters or No Parameters? To Throw or Not to Throw?
	Creating Your Own Events
	Additional Methods
	Fire Away!

