
2024/05/08 01:07 1/1 Publish/Push Messages

Documentation - http://doc.sibvisions.com/

Table of Contents

2024/05/08 01:07 1/2 Publish/Push Messages

Documentation - http://doc.sibvisions.com/

A standard JVx application requests data from the server side via Connection. This concept doesn't
support sending messages from the server to the client side.

In JVx, we have a keep alive mechanism and this usually checks every 30 seconds if the connection to
the server-side is still valid. This alive check can be used to send properties to the client using
connection properties. It's also known as server side polling mechanism. But this mechanism isn't the
best approach for sending any kind of information to the client side.

To solve this problem, we introduced the Callback Broker on server side. This broker is available for
any session via SessionContext. It makes it possible to send any object to the client-side. The client-
side is able to listen to so called call-back calls and, e.g., change the UI or trigger data updates.

A callback call is not the same as an async call. The difference is that an async call will be triggered
from the client side and starts a new thread on server side for the execution. A callback call is
triggered from the server side and sends information to the client side.

If you publish a message, it's not guaranteed that the message will be pushed immediately to the
client side. This is technology-dependent, e.g., it will work immediately with Vaadin UI because
websockets are supported. If the technology doesn't support push, the pull mechanism via alive check
will be used. So it's guaranteed that the client side receives the message as soon as possible.

If you want to use the publish mechanism, simply register a listener on your connection:

ICallBackResultListener listener = new ICallBackResultListener()
{
 public void callBackResult(CallBackResultEvent pEvent) throws Throwable
 {
 if ("COUNT_ADD".equals(pEvent.getInstruction()))
 {
 counter += ((Integer)pEvent.getObject()).intValue();
 }
 }
}

AbstractConnection con = getConnection();
con.addCallBackResultListener(listener);

To send a message, simply call:

SessionContext.getCurrentInstance().getCallBackBroker().publish("COUNT_ADD",
Integer.valueOf(1));

on the server side.

But be careful if you run in a thread because the broker won't be available outside the server
execution thread. So, use a cached instance of the broker, e.g.:

final ICallBackBroker broker =
SessionContext.getCurrentInstance().getCallBackBroker();

Thread th = new Thread(new Runnable()
{

http://doc.sibvisions.com/jvx/communication/connections
http://doc.sibvisions.com/jvx/communication/client_server_properties
http://doc.sibvisions.com/jvx/server/lco/sessioncontext
http://doc.sibvisions.com/jvx/communication/async_callback
http://doc.sibvisions.com/vaadin/home
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+thread
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+thread
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runnable

2024/05/08 01:07 2/2 Publish/Push Messages

Documentation - http://doc.sibvisions.com/

 public void run()
 {
 //... server logic

 broker.publish("COUNT_ADD", Integer.valueOf(i++));
 }
});

th.start();

The ICallBackBroker interface defines an enum for the PublishMode:

public enum PublishMode
{
 /** only the current session. */
 CurrentSession,
 /** other sessions from the current master session. */
 OtherSessions,
 /** only the master of the current session. */
 CurrentMasterSession,
 /** all sessions which are like the current session, and the current
session. */
 AllCurrentSessions,
 /** all sessions which are like the current session, but not the current
session. */
 AllOtherSessions,
 /** all master sessions. */
 AllMasterSessions,
 /** all master sessions but not the master session of the current
session. */
 AllOtherMasterSessions
}

If you don't use a specific mode, the CurrentSession mode will be used as default setting, like in the
above example.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link:
http://doc.sibvisions.com/jvx/communication/push_publish

Last update: 2020/07/08 17:48

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+integer
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/communication/push_publish

	Table of Contents

