2025/10/18 22:20 1/1 Calling a Server Action

Table of Contents

Documentation - http://doc.sibvisions.com/

2025/10/18 22:20 1/3 Calling a Server Action

A server action is a method/function that is defined in a life cycle object at the server. Execution is
initiated either by the client or directly at the server.

In short, it is any method at the business level of the application.

Server actions are used for functions that are not/should not be executed at the client, including
business logic such as mail transmission, interface requests, calculations, etc.

Example
We want to develop an application that manages purchase orders. These orders are provided by SAP

via a web services interface and shown in a separate form in our application. In addition, cancellation
of individual orders via SAP web services should be possible.

Cancellations are initiated by the client via a button. The order number, as well as a PIN/confirmation
code, are required for execution.

We'll show snippets of client- and server-side implementation.

/** the communication connection to the server. */
AbstractConnection connection

/** the orders table. */

RemoteDataBook rdbOrder RemoteDataBook
/**
* Initializes the UI.
s/
void init
connection MasterConnection)application.getConnection
createSubConnection("apps.firstapp.frames.Orders"
connection.open
rdbOrder.setDataSource(dataSource
rdbOrder.setName("orders"
rdbOrder.open
UIButton butStorno UIButton("Cancel"
butCancel.eventAction().addListener , "doCancel"
/**

* Performs the cancellation of an order.
*

Documentation - http://doc.sibvisions.com/

2025/10/18 22:20 2/3 Calling a Server Action

* @throws Throwable if the cancellation is not possible or the remote
system has errors
*/

void doCancel Throwable

connection.callAction("cancel", rdbOrder.getValue("ID"),
editPin.getText
The action call is done with the following line:
connection.callAction("cancel", rdbOrder.getValue("ID"), editPin.getText

The action “cancel” is called via the server connection connection. The parameter ID and PIN are first
entered by the user and passed on to the call.

Server
Orders.java
apps.firstapp.frames
/**
* The LCO for the Orders Workscreen.
* <p/>
* @author René Jahn
s
Orders Session
[e
// User-defined methods
[/~~~ S B e R e S e e S S e
/**
* Returns the orders storage.
k

* @return the orders storage
* @throws Exception if the initialization throws an error
*/

DBStorage getOrders Exception

/**
* Performs the cancellation of an order via SAP webservice.

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://doc.sibvisions.com/_export/code/jvx/communication/calling_server_action?codeblock=2
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exception

2025/10/18 22:20 3/3 Calling a Server Action

* @param pOrderId the order ID
* @param pPin the storno PIN
*/
void cancel(BigDecimal pOrderId, String pPin

//call SAP webservice with ID and PIN

// Orders

If exceptions occur during execution, they can easily be passed on using the throws clause, as the
application independently handles errors.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: [x]
http://doc.sibvisions.com/jvx/communication/calling_server_action

Last update: 2020/07/08 17:46

Documentation - http://doc.sibvisions.com/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://doc.sibvisions.com/
http://doc.sibvisions.com/jvx/communication/calling_server_action

	Table of Contents
	[Example]
	[Example]
	[Example]
	Example
	Server

