2026/01/24 11:38 1/1 Creating a custom screen

Table of Contents

Documentation - http://doc.sibvisions.com/



2026/01/24 11:38 1/3 Creating a custom screen

If you want to customize your screen, with flutter widgets on the client, we offer a simple API to
change a screen to whatever you need. In the following sections you'll learn how to achieve that.

Creating a custom screen manager

To be able to customize your screens, you have to create a custom screen manager for your
application. You can achieve this by extending your dart class from CustomScreenManager like so:

ExampleCustomScreenManager CustomScreenManager

The CustomScreenManager has all the functions you'll need to provide your users with customized
screens. For this example we'll override both the init and the onMenu function.

The onMenu function is used to provide the menu with screens that aren't provided by the server. To
add our own entry to the Menu we just have to override the function like this:

@Qoverride
void onMenu(SoMenuManager menuManager
menuManager.addItemToMenu
id: 'CustomComponentId',
group: 'Customscreens',
text: 'Custom Screen',
image: 'FontAwesome.map',

This adds an entry to our menu. For us to be able to react to a click on this menu item we have to
override the init function:

@override
init
SoComponentCreator componentCreator = SoComponentCreator();

.registerScreen('CustomComponentId"',
CustomScreen(componentCreator) );
.registerScreen('com.sibvisions.example.ContactScreen:L1 MI DOOPENWORKS
CREEN COM-SIB-EXA-CONWORSCR', ContactCustomScreen(componentCreator));

In this case the init function registers custom screen implementations for specific identifiers.

Creating a custom screen

Theres are two use-cases of custom screens

1. A screen which is available only on the client side
2. A screen which is available on the server

In this tutorial we'll cover both use-cases. Let's start with a custom screen thats not available on the

Documentation - http://doc.sibvisions.com/



2026/01/24 11:38 2/3 Creating a custom screen

server. For this we have to extend an already existing class: CustomScreen.

CustomScreen CustomScreen
CustomScreen(SoComponentCreator componentCreator
componentCreator);

@override
Widget getWidget
CustomWidget () ;

@override
void update(Request request, ResponseData responseData

@override
bool withServer

In this class you can return any widget you want in the getWidget function. The withServer function
tells the client, not to communicate with the server for this screen. The update function is not
necessary for this example.

If you want to create a custom screen that communicates with the server, you have to return
true; in the withServer function:

ContactCustomScreen CustomScreen
ContactCustomScreen(SoComponentCreator componentCreator
componentCreator);
@override
Widget getWidget
CoCustomComponent contactComp = CoCustomComponent

GlobalKey(debugLabel: 'contact'),
componentScreen.context,

’

contactComp.widget = Text('This is my replaced widget');

CoPanel comp =

.componentScreen.getComponentFromName('contactPanel"');
.componentScreen. replaceComponent (comp, contactComp);

IComponent component = .componentScreen.getRootComponent () ;

component !=
component.getWidget();

Container
alignment: Alignment.center,

Documentation - http://doc.sibvisions.com/



2026/01/24 11:38 3/3 Creating a custom screen

child: Text('No root component defined'),

.
’

@override
void update(Request request, ResponseData responeData
componentScreen.updateData(request, responeData);
responeData.screenGeneric !=
componentScreen.updateComponents (responeData.screenGeneric.changedComponents

’

@override
bool withServer

.
’

In the getWidget function we return our custom widget. In this case we create a
CoCustomComponent which can hold any widget we want. Afterwards we get the component that we
want to replace from the widget tree via
this.componentScreen.getComponentFromName('contactPanel');.

To replace this component with our own widget, we just have to call
this.componentScreen. replaceComponent(comp, contactComp);.

We also override the update function to update our components when we get new data from the
server. The withServer function now tells our screen to communicate with the server.

An example screen can be found here and an example custom screen manager here.

From:
http://doc.sibvisions.com/ - Documentation

Permanent link: (2]
http://doc.sibvisions.com/flutterui/custom_screen

Last update: 2020/08/13 16:26

Documentation - http://doc.sibvisions.com/


https://github.com/sibvisions/flutterclient.example/blob/master/lib/screens/contact_custom_screen.dart
https://github.com/sibvisions/flutterclient.example/blob/master/lib/example_custom_screen_manager.dart
http://doc.sibvisions.com/
http://doc.sibvisions.com/flutterui/custom_screen

	Table of Contents
	[Creating a custom screen manager]
	[Creating a custom screen manager]
	Creating a custom screen manager
	Creating a custom screen




