
2021/11/28 11:29 1/1 Using Dynamic/User Objects

Documentation - https://doc.sibvisions.com/

Table of Contents

2021/11/28 11:29 1/2 Using Dynamic/User Objects

Documentation - https://doc.sibvisions.com/

With a dynamic object, we think of a dynamically created object that is available in the application
without changing the application. Sometimes, it's useful to “inject” objects into your application and
use such objects in your business logic. This use-case is already supported via Object Injection. The
missing part is that it's not automatically possible to access such objects in your application. Sure, if
you put an action in your LCO and a simple remote call in your custom application, it'll be easy. But
it's not guaranteed that you have a custom application. It's some work to extend the standard ProjX
application. So this is not something to be done last minute.

To support this use-case, we have dynamic objects available via standard ProjX API. And here is it:

public Object getDynamicContent(String pName);

The name is the important thing. By default, no dynamic objects exist, so the method will return null.

If want to use a custom dynamic object, write one, e.g.:

public class DynamicUserContent extends AbstractDynamicContent
{
 @Override
 public String getContentName()
 {
 return "userDetails";
 }

 @Override
 public Object getDynamicContent()
 {
 String sUser = SessionContext.getCurrentSession().getUserName();

 Bean bean = new Bean();
 bean.put("FIRST_NAME", "John");
 bean.put("LAST_NAME", "Doe");
 bean.put("EMAIL", "email@domain.com");
 bean.put("PROFILE_IMAGE",
FileUtil.getContent(ResourceUtil.getResourceAsStream("/images/" +
sUser.toLowerCase() + ".png")));

 return bean;
 }
}

This object must be injected in your session LCO, for example via ServiceLoader. If it's injected, the
API call

((ProjX)getApplication()).getDynamicContent("userDetails");

will return the Bean instance of your DynamicUserContent.

As you can see, it's super easy to inject an object and make it accessible in your application without
changing your application code.

https://doc.sibvisions.com/jvx/server/lco/inject_objects
https://doc.sibvisions.com/jvx/server/lco/actions
https://doc.sibvisions.com/jvx/communication/calling_server_action
https://doc.sibvisions.com/vaadin/customize_application
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+object
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
https://doc.sibvisions.com/jvx/server/lco/inject_objects

2021/11/28 11:29 2/2 Using Dynamic/User Objects

Documentation - https://doc.sibvisions.com/

From:
https://doc.sibvisions.com/ - Documentation

Permanent link:
https://doc.sibvisions.com/applications/user/dynamic_objects

Last update: 2020/07/01 17:19

https://doc.sibvisions.com/
https://doc.sibvisions.com/applications/user/dynamic_objects

	Table of Contents

